| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hofval.m |  |-  M = ( HomF ` C ) | 
						
							| 2 |  | hofval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 3 |  | hof1.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | hof1.h |  |-  H = ( Hom ` C ) | 
						
							| 5 |  | hof1.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | hof1.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | hof2.z |  |-  ( ph -> Z e. B ) | 
						
							| 8 |  | hof2.w |  |-  ( ph -> W e. B ) | 
						
							| 9 |  | hof2.o |  |-  .x. = ( comp ` C ) | 
						
							| 10 |  | hof2.f |  |-  ( ph -> F e. ( Z H X ) ) | 
						
							| 11 |  | hof2.g |  |-  ( ph -> G e. ( Y H W ) ) | 
						
							| 12 |  | hof2.k |  |-  ( ph -> K e. ( X H Y ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 | hof2val |  |-  ( ph -> ( F ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) G ) = ( h e. ( X H Y ) |-> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) ) ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ h = K ) -> h = K ) | 
						
							| 15 | 14 | oveq2d |  |-  ( ( ph /\ h = K ) -> ( G ( <. X , Y >. .x. W ) h ) = ( G ( <. X , Y >. .x. W ) K ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ( ph /\ h = K ) -> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) = ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) ) | 
						
							| 17 |  | ovexd |  |-  ( ph -> ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) e. _V ) | 
						
							| 18 | 13 16 12 17 | fvmptd |  |-  ( ph -> ( ( F ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) G ) ` K ) = ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) ) |