| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hofval.m |
|- M = ( HomF ` C ) |
| 2 |
|
hofval.c |
|- ( ph -> C e. Cat ) |
| 3 |
|
hof1.b |
|- B = ( Base ` C ) |
| 4 |
|
hof1.h |
|- H = ( Hom ` C ) |
| 5 |
|
hof1.x |
|- ( ph -> X e. B ) |
| 6 |
|
hof1.y |
|- ( ph -> Y e. B ) |
| 7 |
|
hof2.z |
|- ( ph -> Z e. B ) |
| 8 |
|
hof2.w |
|- ( ph -> W e. B ) |
| 9 |
|
hof2.o |
|- .x. = ( comp ` C ) |
| 10 |
|
hof2.f |
|- ( ph -> F e. ( Z H X ) ) |
| 11 |
|
hof2.g |
|- ( ph -> G e. ( Y H W ) ) |
| 12 |
|
hof2.k |
|- ( ph -> K e. ( X H Y ) ) |
| 13 |
1 2 3 4 5 6 7 8 9 10 11
|
hof2val |
|- ( ph -> ( F ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) G ) = ( h e. ( X H Y ) |-> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) ) ) |
| 14 |
|
simpr |
|- ( ( ph /\ h = K ) -> h = K ) |
| 15 |
14
|
oveq2d |
|- ( ( ph /\ h = K ) -> ( G ( <. X , Y >. .x. W ) h ) = ( G ( <. X , Y >. .x. W ) K ) ) |
| 16 |
15
|
oveq1d |
|- ( ( ph /\ h = K ) -> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) = ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) ) |
| 17 |
|
ovexd |
|- ( ph -> ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) e. _V ) |
| 18 |
13 16 12 17
|
fvmptd |
|- ( ph -> ( ( F ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) G ) ` K ) = ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) ) |