Metamath Proof Explorer


Theorem hof2

Description: The morphism part of the Hom functor, for morphisms <. f , g >. : <. X , Y >. --> <. Z , W >. (which since the first argument is contravariant means morphisms f : Z --> X and g : Y --> W ), yields a function (a morphism of SetCat ) mapping h : X --> Y to g o. h o. f : Z --> W . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofval.m
|- M = ( HomF ` C )
hofval.c
|- ( ph -> C e. Cat )
hof1.b
|- B = ( Base ` C )
hof1.h
|- H = ( Hom ` C )
hof1.x
|- ( ph -> X e. B )
hof1.y
|- ( ph -> Y e. B )
hof2.z
|- ( ph -> Z e. B )
hof2.w
|- ( ph -> W e. B )
hof2.o
|- .x. = ( comp ` C )
hof2.f
|- ( ph -> F e. ( Z H X ) )
hof2.g
|- ( ph -> G e. ( Y H W ) )
hof2.k
|- ( ph -> K e. ( X H Y ) )
Assertion hof2
|- ( ph -> ( ( F ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) G ) ` K ) = ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) )

Proof

Step Hyp Ref Expression
1 hofval.m
 |-  M = ( HomF ` C )
2 hofval.c
 |-  ( ph -> C e. Cat )
3 hof1.b
 |-  B = ( Base ` C )
4 hof1.h
 |-  H = ( Hom ` C )
5 hof1.x
 |-  ( ph -> X e. B )
6 hof1.y
 |-  ( ph -> Y e. B )
7 hof2.z
 |-  ( ph -> Z e. B )
8 hof2.w
 |-  ( ph -> W e. B )
9 hof2.o
 |-  .x. = ( comp ` C )
10 hof2.f
 |-  ( ph -> F e. ( Z H X ) )
11 hof2.g
 |-  ( ph -> G e. ( Y H W ) )
12 hof2.k
 |-  ( ph -> K e. ( X H Y ) )
13 1 2 3 4 5 6 7 8 9 10 11 hof2val
 |-  ( ph -> ( F ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) G ) = ( h e. ( X H Y ) |-> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) ) )
14 simpr
 |-  ( ( ph /\ h = K ) -> h = K )
15 14 oveq2d
 |-  ( ( ph /\ h = K ) -> ( G ( <. X , Y >. .x. W ) h ) = ( G ( <. X , Y >. .x. W ) K ) )
16 15 oveq1d
 |-  ( ( ph /\ h = K ) -> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) = ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) )
17 ovexd
 |-  ( ph -> ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) e. _V )
18 13 16 12 17 fvmptd
 |-  ( ph -> ( ( F ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) G ) ` K ) = ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) )