Description: The morphism part of the Hom functor, for morphisms <. f , g >. : <. X , Y >. --> <. Z , W >. (which since the first argument is contravariant means morphisms f : Z --> X and g : Y --> W ), yields a function (a morphism of SetCat ) mapping h : X --> Y to g o. h o. f : Z --> W . (Contributed by Mario Carneiro, 15-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hofval.m | |- M = ( HomF ` C ) |
|
hofval.c | |- ( ph -> C e. Cat ) |
||
hof1.b | |- B = ( Base ` C ) |
||
hof1.h | |- H = ( Hom ` C ) |
||
hof1.x | |- ( ph -> X e. B ) |
||
hof1.y | |- ( ph -> Y e. B ) |
||
hof2.z | |- ( ph -> Z e. B ) |
||
hof2.w | |- ( ph -> W e. B ) |
||
hof2.o | |- .x. = ( comp ` C ) |
||
hof2.f | |- ( ph -> F e. ( Z H X ) ) |
||
hof2.g | |- ( ph -> G e. ( Y H W ) ) |
||
hof2.k | |- ( ph -> K e. ( X H Y ) ) |
||
Assertion | hof2 | |- ( ph -> ( ( F ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) G ) ` K ) = ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | |- M = ( HomF ` C ) |
|
2 | hofval.c | |- ( ph -> C e. Cat ) |
|
3 | hof1.b | |- B = ( Base ` C ) |
|
4 | hof1.h | |- H = ( Hom ` C ) |
|
5 | hof1.x | |- ( ph -> X e. B ) |
|
6 | hof1.y | |- ( ph -> Y e. B ) |
|
7 | hof2.z | |- ( ph -> Z e. B ) |
|
8 | hof2.w | |- ( ph -> W e. B ) |
|
9 | hof2.o | |- .x. = ( comp ` C ) |
|
10 | hof2.f | |- ( ph -> F e. ( Z H X ) ) |
|
11 | hof2.g | |- ( ph -> G e. ( Y H W ) ) |
|
12 | hof2.k | |- ( ph -> K e. ( X H Y ) ) |
|
13 | 1 2 3 4 5 6 7 8 9 10 11 | hof2val | |- ( ph -> ( F ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) G ) = ( h e. ( X H Y ) |-> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) ) ) |
14 | simpr | |- ( ( ph /\ h = K ) -> h = K ) |
|
15 | 14 | oveq2d | |- ( ( ph /\ h = K ) -> ( G ( <. X , Y >. .x. W ) h ) = ( G ( <. X , Y >. .x. W ) K ) ) |
16 | 15 | oveq1d | |- ( ( ph /\ h = K ) -> ( ( G ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) F ) = ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) ) |
17 | ovexd | |- ( ph -> ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) e. _V ) |
|
18 | 13 16 12 17 | fvmptd | |- ( ph -> ( ( F ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) G ) ` K ) = ( ( G ( <. X , Y >. .x. W ) K ) ( <. Z , X >. .x. W ) F ) ) |