Step |
Hyp |
Ref |
Expression |
1 |
|
hofval.m |
⊢ 𝑀 = ( HomF ‘ 𝐶 ) |
2 |
|
hofval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
3 |
|
hof1.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
hof1.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
5 |
|
hof1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
hof1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
hof2.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
hof2.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
9 |
|
hof2.o |
⊢ · = ( comp ‘ 𝐶 ) |
10 |
|
hof2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑍 𝐻 𝑋 ) ) |
11 |
|
hof2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑊 ) ) |
12 |
1 2 3 4 5 6 7 8 9
|
hof2fval |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝑀 ) 〈 𝑍 , 𝑊 〉 ) = ( 𝑓 ∈ ( 𝑍 𝐻 𝑋 ) , 𝑔 ∈ ( 𝑌 𝐻 𝑊 ) ↦ ( ℎ ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ℎ ) ( 〈 𝑍 , 𝑋 〉 · 𝑊 ) 𝑓 ) ) ) ) |
13 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑔 = 𝐺 ) |
14 |
13
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑌 ) ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ℎ ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ℎ ) ) |
15 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑓 = 𝐹 ) |
16 |
14 15
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑌 ) ) → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ℎ ) ( 〈 𝑍 , 𝑋 〉 · 𝑊 ) 𝑓 ) = ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ℎ ) ( 〈 𝑍 , 𝑋 〉 · 𝑊 ) 𝐹 ) ) |
17 |
16
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ( ℎ ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ℎ ) ( 〈 𝑍 , 𝑋 〉 · 𝑊 ) 𝑓 ) ) = ( ℎ ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ℎ ) ( 〈 𝑍 , 𝑋 〉 · 𝑊 ) 𝐹 ) ) ) |
18 |
|
ovex |
⊢ ( 𝑋 𝐻 𝑌 ) ∈ V |
19 |
18
|
mptex |
⊢ ( ℎ ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ℎ ) ( 〈 𝑍 , 𝑋 〉 · 𝑊 ) 𝐹 ) ) ∈ V |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( ℎ ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ℎ ) ( 〈 𝑍 , 𝑋 〉 · 𝑊 ) 𝐹 ) ) ∈ V ) |
21 |
12 17 10 11 20
|
ovmpod |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝑀 ) 〈 𝑍 , 𝑊 〉 ) 𝐺 ) = ( ℎ ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ℎ ) ( 〈 𝑍 , 𝑋 〉 · 𝑊 ) 𝐹 ) ) ) |