Step |
Hyp |
Ref |
Expression |
1 |
|
hofval.m |
|- M = ( HomF ` C ) |
2 |
|
hofval.c |
|- ( ph -> C e. Cat ) |
3 |
|
hof1.b |
|- B = ( Base ` C ) |
4 |
|
hof1.h |
|- H = ( Hom ` C ) |
5 |
|
hof1.x |
|- ( ph -> X e. B ) |
6 |
|
hof1.y |
|- ( ph -> Y e. B ) |
7 |
|
hof2.z |
|- ( ph -> Z e. B ) |
8 |
|
hof2.w |
|- ( ph -> W e. B ) |
9 |
|
hof2.o |
|- .x. = ( comp ` C ) |
10 |
1 2 3 4 9
|
hofval |
|- ( ph -> M = <. ( Homf ` C ) , ( x e. ( B X. B ) , y e. ( B X. B ) |-> ( f e. ( ( 1st ` y ) H ( 1st ` x ) ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( h e. ( H ` x ) |-> ( ( g ( x .x. ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. .x. ( 2nd ` y ) ) f ) ) ) ) >. ) |
11 |
|
fvex |
|- ( Homf ` C ) e. _V |
12 |
3
|
fvexi |
|- B e. _V |
13 |
12 12
|
xpex |
|- ( B X. B ) e. _V |
14 |
13 13
|
mpoex |
|- ( x e. ( B X. B ) , y e. ( B X. B ) |-> ( f e. ( ( 1st ` y ) H ( 1st ` x ) ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( h e. ( H ` x ) |-> ( ( g ( x .x. ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. .x. ( 2nd ` y ) ) f ) ) ) ) e. _V |
15 |
11 14
|
op2ndd |
|- ( M = <. ( Homf ` C ) , ( x e. ( B X. B ) , y e. ( B X. B ) |-> ( f e. ( ( 1st ` y ) H ( 1st ` x ) ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( h e. ( H ` x ) |-> ( ( g ( x .x. ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. .x. ( 2nd ` y ) ) f ) ) ) ) >. -> ( 2nd ` M ) = ( x e. ( B X. B ) , y e. ( B X. B ) |-> ( f e. ( ( 1st ` y ) H ( 1st ` x ) ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( h e. ( H ` x ) |-> ( ( g ( x .x. ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. .x. ( 2nd ` y ) ) f ) ) ) ) ) |
16 |
10 15
|
syl |
|- ( ph -> ( 2nd ` M ) = ( x e. ( B X. B ) , y e. ( B X. B ) |-> ( f e. ( ( 1st ` y ) H ( 1st ` x ) ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( h e. ( H ` x ) |-> ( ( g ( x .x. ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. .x. ( 2nd ` y ) ) f ) ) ) ) ) |
17 |
|
simprr |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> y = <. Z , W >. ) |
18 |
17
|
fveq2d |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 1st ` y ) = ( 1st ` <. Z , W >. ) ) |
19 |
|
op1stg |
|- ( ( Z e. B /\ W e. B ) -> ( 1st ` <. Z , W >. ) = Z ) |
20 |
7 8 19
|
syl2anc |
|- ( ph -> ( 1st ` <. Z , W >. ) = Z ) |
21 |
20
|
adantr |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 1st ` <. Z , W >. ) = Z ) |
22 |
18 21
|
eqtrd |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 1st ` y ) = Z ) |
23 |
|
simprl |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> x = <. X , Y >. ) |
24 |
23
|
fveq2d |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 1st ` x ) = ( 1st ` <. X , Y >. ) ) |
25 |
|
op1stg |
|- ( ( X e. B /\ Y e. B ) -> ( 1st ` <. X , Y >. ) = X ) |
26 |
5 6 25
|
syl2anc |
|- ( ph -> ( 1st ` <. X , Y >. ) = X ) |
27 |
26
|
adantr |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 1st ` <. X , Y >. ) = X ) |
28 |
24 27
|
eqtrd |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 1st ` x ) = X ) |
29 |
22 28
|
oveq12d |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( ( 1st ` y ) H ( 1st ` x ) ) = ( Z H X ) ) |
30 |
23
|
fveq2d |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 2nd ` x ) = ( 2nd ` <. X , Y >. ) ) |
31 |
|
op2ndg |
|- ( ( X e. B /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) |
32 |
5 6 31
|
syl2anc |
|- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
33 |
32
|
adantr |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 2nd ` <. X , Y >. ) = Y ) |
34 |
30 33
|
eqtrd |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 2nd ` x ) = Y ) |
35 |
17
|
fveq2d |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 2nd ` y ) = ( 2nd ` <. Z , W >. ) ) |
36 |
|
op2ndg |
|- ( ( Z e. B /\ W e. B ) -> ( 2nd ` <. Z , W >. ) = W ) |
37 |
7 8 36
|
syl2anc |
|- ( ph -> ( 2nd ` <. Z , W >. ) = W ) |
38 |
37
|
adantr |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 2nd ` <. Z , W >. ) = W ) |
39 |
35 38
|
eqtrd |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( 2nd ` y ) = W ) |
40 |
34 39
|
oveq12d |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( ( 2nd ` x ) H ( 2nd ` y ) ) = ( Y H W ) ) |
41 |
23
|
fveq2d |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( H ` x ) = ( H ` <. X , Y >. ) ) |
42 |
|
df-ov |
|- ( X H Y ) = ( H ` <. X , Y >. ) |
43 |
41 42
|
eqtr4di |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( H ` x ) = ( X H Y ) ) |
44 |
22 28
|
opeq12d |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> <. ( 1st ` y ) , ( 1st ` x ) >. = <. Z , X >. ) |
45 |
44 39
|
oveq12d |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( <. ( 1st ` y ) , ( 1st ` x ) >. .x. ( 2nd ` y ) ) = ( <. Z , X >. .x. W ) ) |
46 |
23 39
|
oveq12d |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( x .x. ( 2nd ` y ) ) = ( <. X , Y >. .x. W ) ) |
47 |
46
|
oveqd |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( g ( x .x. ( 2nd ` y ) ) h ) = ( g ( <. X , Y >. .x. W ) h ) ) |
48 |
|
eqidd |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> f = f ) |
49 |
45 47 48
|
oveq123d |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( ( g ( x .x. ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. .x. ( 2nd ` y ) ) f ) = ( ( g ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) f ) ) |
50 |
43 49
|
mpteq12dv |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( h e. ( H ` x ) |-> ( ( g ( x .x. ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. .x. ( 2nd ` y ) ) f ) ) = ( h e. ( X H Y ) |-> ( ( g ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) f ) ) ) |
51 |
29 40 50
|
mpoeq123dv |
|- ( ( ph /\ ( x = <. X , Y >. /\ y = <. Z , W >. ) ) -> ( f e. ( ( 1st ` y ) H ( 1st ` x ) ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( h e. ( H ` x ) |-> ( ( g ( x .x. ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. .x. ( 2nd ` y ) ) f ) ) ) = ( f e. ( Z H X ) , g e. ( Y H W ) |-> ( h e. ( X H Y ) |-> ( ( g ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) f ) ) ) ) |
52 |
5 6
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( B X. B ) ) |
53 |
7 8
|
opelxpd |
|- ( ph -> <. Z , W >. e. ( B X. B ) ) |
54 |
|
ovex |
|- ( Z H X ) e. _V |
55 |
|
ovex |
|- ( Y H W ) e. _V |
56 |
54 55
|
mpoex |
|- ( f e. ( Z H X ) , g e. ( Y H W ) |-> ( h e. ( X H Y ) |-> ( ( g ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) f ) ) ) e. _V |
57 |
56
|
a1i |
|- ( ph -> ( f e. ( Z H X ) , g e. ( Y H W ) |-> ( h e. ( X H Y ) |-> ( ( g ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) f ) ) ) e. _V ) |
58 |
16 51 52 53 57
|
ovmpod |
|- ( ph -> ( <. X , Y >. ( 2nd ` M ) <. Z , W >. ) = ( f e. ( Z H X ) , g e. ( Y H W ) |-> ( h e. ( X H Y ) |-> ( ( g ( <. X , Y >. .x. W ) h ) ( <. Z , X >. .x. W ) f ) ) ) ) |