| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hofval.m |
|
| 2 |
|
hofval.c |
|
| 3 |
|
hof1.b |
|
| 4 |
|
hof1.h |
|
| 5 |
|
hof1.x |
|
| 6 |
|
hof1.y |
|
| 7 |
|
hof2.z |
|
| 8 |
|
hof2.w |
|
| 9 |
|
hof2.o |
|
| 10 |
1 2 3 4 9
|
hofval |
|
| 11 |
|
fvex |
|
| 12 |
3
|
fvexi |
|
| 13 |
12 12
|
xpex |
|
| 14 |
13 13
|
mpoex |
|
| 15 |
11 14
|
op2ndd |
|
| 16 |
10 15
|
syl |
|
| 17 |
|
simprr |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
op1stg |
|
| 20 |
7 8 19
|
syl2anc |
|
| 21 |
20
|
adantr |
|
| 22 |
18 21
|
eqtrd |
|
| 23 |
|
simprl |
|
| 24 |
23
|
fveq2d |
|
| 25 |
|
op1stg |
|
| 26 |
5 6 25
|
syl2anc |
|
| 27 |
26
|
adantr |
|
| 28 |
24 27
|
eqtrd |
|
| 29 |
22 28
|
oveq12d |
|
| 30 |
23
|
fveq2d |
|
| 31 |
|
op2ndg |
|
| 32 |
5 6 31
|
syl2anc |
|
| 33 |
32
|
adantr |
|
| 34 |
30 33
|
eqtrd |
|
| 35 |
17
|
fveq2d |
|
| 36 |
|
op2ndg |
|
| 37 |
7 8 36
|
syl2anc |
|
| 38 |
37
|
adantr |
|
| 39 |
35 38
|
eqtrd |
|
| 40 |
34 39
|
oveq12d |
|
| 41 |
23
|
fveq2d |
|
| 42 |
|
df-ov |
|
| 43 |
41 42
|
eqtr4di |
|
| 44 |
22 28
|
opeq12d |
|
| 45 |
44 39
|
oveq12d |
|
| 46 |
23 39
|
oveq12d |
|
| 47 |
46
|
oveqd |
|
| 48 |
|
eqidd |
|
| 49 |
45 47 48
|
oveq123d |
|
| 50 |
43 49
|
mpteq12dv |
|
| 51 |
29 40 50
|
mpoeq123dv |
|
| 52 |
5 6
|
opelxpd |
|
| 53 |
7 8
|
opelxpd |
|
| 54 |
|
ovex |
|
| 55 |
|
ovex |
|
| 56 |
54 55
|
mpoex |
|
| 57 |
56
|
a1i |
|
| 58 |
16 51 52 53 57
|
ovmpod |
|