| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ovmpt4g.3 | 
							 |-  F = ( x e. A , y e. B |-> C )  | 
						
						
							| 2 | 
							
								
							 | 
							elisset | 
							 |-  ( C e. V -> E. z z = C )  | 
						
						
							| 3 | 
							
								
							 | 
							moeq | 
							 |-  E* z z = C  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							 |-  ( ( x e. A /\ y e. B ) -> E* z z = C )  | 
						
						
							| 5 | 
							
								
							 | 
							df-mpo | 
							 |-  ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } | 
						
						
							| 6 | 
							
								1 5
							 | 
							eqtri | 
							 |-  F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } | 
						
						
							| 7 | 
							
								4 6
							 | 
							ovidi | 
							 |-  ( ( x e. A /\ y e. B ) -> ( z = C -> ( x F y ) = z ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( z = C -> ( ( x F y ) = z <-> ( x F y ) = C ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							mpbidi | 
							 |-  ( ( x e. A /\ y e. B ) -> ( z = C -> ( x F y ) = C ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							exlimdv | 
							 |-  ( ( x e. A /\ y e. B ) -> ( E. z z = C -> ( x F y ) = C ) )  | 
						
						
							| 11 | 
							
								2 10
							 | 
							syl5 | 
							 |-  ( ( x e. A /\ y e. B ) -> ( C e. V -> ( x F y ) = C ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3impia | 
							 |-  ( ( x e. A /\ y e. B /\ C e. V ) -> ( x F y ) = C )  |