Metamath Proof Explorer


Theorem ovidi

Description: The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses ovidi.2
|- ( ( x e. R /\ y e. S ) -> E* z ph )
ovidi.3
|- F = { <. <. x , y >. , z >. | ( ( x e. R /\ y e. S ) /\ ph ) }
Assertion ovidi
|- ( ( x e. R /\ y e. S ) -> ( ph -> ( x F y ) = z ) )

Proof

Step Hyp Ref Expression
1 ovidi.2
 |-  ( ( x e. R /\ y e. S ) -> E* z ph )
2 ovidi.3
 |-  F = { <. <. x , y >. , z >. | ( ( x e. R /\ y e. S ) /\ ph ) }
3 moanimv
 |-  ( E* z ( ( x e. R /\ y e. S ) /\ ph ) <-> ( ( x e. R /\ y e. S ) -> E* z ph ) )
4 1 3 mpbir
 |-  E* z ( ( x e. R /\ y e. S ) /\ ph )
5 4 2 ovidig
 |-  ( ( ( x e. R /\ y e. S ) /\ ph ) -> ( x F y ) = z )
6 5 ex
 |-  ( ( x e. R /\ y e. S ) -> ( ph -> ( x F y ) = z ) )