Step |
Hyp |
Ref |
Expression |
1 |
|
ovidig.1 |
|- E* z ph |
2 |
|
ovidig.2 |
|- F = { <. <. x , y >. , z >. | ph } |
3 |
|
df-ov |
|- ( x F y ) = ( F ` <. x , y >. ) |
4 |
1
|
funoprab |
|- Fun { <. <. x , y >. , z >. | ph } |
5 |
2
|
funeqi |
|- ( Fun F <-> Fun { <. <. x , y >. , z >. | ph } ) |
6 |
4 5
|
mpbir |
|- Fun F |
7 |
|
oprabidw |
|- ( <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ph } <-> ph ) |
8 |
7
|
biimpri |
|- ( ph -> <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ph } ) |
9 |
8 2
|
eleqtrrdi |
|- ( ph -> <. <. x , y >. , z >. e. F ) |
10 |
|
funopfv |
|- ( Fun F -> ( <. <. x , y >. , z >. e. F -> ( F ` <. x , y >. ) = z ) ) |
11 |
6 9 10
|
mpsyl |
|- ( ph -> ( F ` <. x , y >. ) = z ) |
12 |
3 11
|
eqtrid |
|- ( ph -> ( x F y ) = z ) |