| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ovmpos.3 | 
							 |-  F = ( x e. C , y e. D |-> R )  | 
						
						
							| 2 | 
							
								
							 | 
							elex | 
							 |-  ( [_ A / x ]_ [_ B / y ]_ R e. V -> [_ A / x ]_ [_ B / y ]_ R e. _V )  | 
						
						
							| 3 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x A  | 
						
						
							| 4 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ y A  | 
						
						
							| 5 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ y B  | 
						
						
							| 6 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ x [_ A / x ]_ R  | 
						
						
							| 7 | 
							
								6
							 | 
							nfel1 | 
							 |-  F/ x [_ A / x ]_ R e. _V  | 
						
						
							| 8 | 
							
								
							 | 
							nfmpo1 | 
							 |-  F/_ x ( x e. C , y e. D |-> R )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							nfcxfr | 
							 |-  F/_ x F  | 
						
						
							| 10 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x y  | 
						
						
							| 11 | 
							
								3 9 10
							 | 
							nfov | 
							 |-  F/_ x ( A F y )  | 
						
						
							| 12 | 
							
								11 6
							 | 
							nfeq | 
							 |-  F/ x ( A F y ) = [_ A / x ]_ R  | 
						
						
							| 13 | 
							
								7 12
							 | 
							nfim | 
							 |-  F/ x ( [_ A / x ]_ R e. _V -> ( A F y ) = [_ A / x ]_ R )  | 
						
						
							| 14 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ y [_ B / y ]_ [_ A / x ]_ R  | 
						
						
							| 15 | 
							
								14
							 | 
							nfel1 | 
							 |-  F/ y [_ B / y ]_ [_ A / x ]_ R e. _V  | 
						
						
							| 16 | 
							
								
							 | 
							nfmpo2 | 
							 |-  F/_ y ( x e. C , y e. D |-> R )  | 
						
						
							| 17 | 
							
								1 16
							 | 
							nfcxfr | 
							 |-  F/_ y F  | 
						
						
							| 18 | 
							
								4 17 5
							 | 
							nfov | 
							 |-  F/_ y ( A F B )  | 
						
						
							| 19 | 
							
								18 14
							 | 
							nfeq | 
							 |-  F/ y ( A F B ) = [_ B / y ]_ [_ A / x ]_ R  | 
						
						
							| 20 | 
							
								15 19
							 | 
							nfim | 
							 |-  F/ y ( [_ B / y ]_ [_ A / x ]_ R e. _V -> ( A F B ) = [_ B / y ]_ [_ A / x ]_ R )  | 
						
						
							| 21 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( x = A -> R = [_ A / x ]_ R )  | 
						
						
							| 22 | 
							
								21
							 | 
							eleq1d | 
							 |-  ( x = A -> ( R e. _V <-> [_ A / x ]_ R e. _V ) )  | 
						
						
							| 23 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = A -> ( x F y ) = ( A F y ) )  | 
						
						
							| 24 | 
							
								23 21
							 | 
							eqeq12d | 
							 |-  ( x = A -> ( ( x F y ) = R <-> ( A F y ) = [_ A / x ]_ R ) )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							imbi12d | 
							 |-  ( x = A -> ( ( R e. _V -> ( x F y ) = R ) <-> ( [_ A / x ]_ R e. _V -> ( A F y ) = [_ A / x ]_ R ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( y = B -> [_ A / x ]_ R = [_ B / y ]_ [_ A / x ]_ R )  | 
						
						
							| 27 | 
							
								26
							 | 
							eleq1d | 
							 |-  ( y = B -> ( [_ A / x ]_ R e. _V <-> [_ B / y ]_ [_ A / x ]_ R e. _V ) )  | 
						
						
							| 28 | 
							
								
							 | 
							oveq2 | 
							 |-  ( y = B -> ( A F y ) = ( A F B ) )  | 
						
						
							| 29 | 
							
								28 26
							 | 
							eqeq12d | 
							 |-  ( y = B -> ( ( A F y ) = [_ A / x ]_ R <-> ( A F B ) = [_ B / y ]_ [_ A / x ]_ R ) )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							imbi12d | 
							 |-  ( y = B -> ( ( [_ A / x ]_ R e. _V -> ( A F y ) = [_ A / x ]_ R ) <-> ( [_ B / y ]_ [_ A / x ]_ R e. _V -> ( A F B ) = [_ B / y ]_ [_ A / x ]_ R ) ) )  | 
						
						
							| 31 | 
							
								1
							 | 
							ovmpt4g | 
							 |-  ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x F y ) = R )  | 
						
						
							| 32 | 
							
								31
							 | 
							3expia | 
							 |-  ( ( x e. C /\ y e. D ) -> ( R e. _V -> ( x F y ) = R ) )  | 
						
						
							| 33 | 
							
								3 4 5 13 20 25 30 32
							 | 
							vtocl2gaf | 
							 |-  ( ( A e. C /\ B e. D ) -> ( [_ B / y ]_ [_ A / x ]_ R e. _V -> ( A F B ) = [_ B / y ]_ [_ A / x ]_ R ) )  | 
						
						
							| 34 | 
							
								
							 | 
							csbcom | 
							 |-  [_ A / x ]_ [_ B / y ]_ R = [_ B / y ]_ [_ A / x ]_ R  | 
						
						
							| 35 | 
							
								34
							 | 
							eleq1i | 
							 |-  ( [_ A / x ]_ [_ B / y ]_ R e. _V <-> [_ B / y ]_ [_ A / x ]_ R e. _V )  | 
						
						
							| 36 | 
							
								34
							 | 
							eqeq2i | 
							 |-  ( ( A F B ) = [_ A / x ]_ [_ B / y ]_ R <-> ( A F B ) = [_ B / y ]_ [_ A / x ]_ R )  | 
						
						
							| 37 | 
							
								33 35 36
							 | 
							3imtr4g | 
							 |-  ( ( A e. C /\ B e. D ) -> ( [_ A / x ]_ [_ B / y ]_ R e. _V -> ( A F B ) = [_ A / x ]_ [_ B / y ]_ R ) )  | 
						
						
							| 38 | 
							
								2 37
							 | 
							syl5 | 
							 |-  ( ( A e. C /\ B e. D ) -> ( [_ A / x ]_ [_ B / y ]_ R e. V -> ( A F B ) = [_ A / x ]_ [_ B / y ]_ R ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							3impia | 
							 |-  ( ( A e. C /\ B e. D /\ [_ A / x ]_ [_ B / y ]_ R e. V ) -> ( A F B ) = [_ A / x ]_ [_ B / y ]_ R )  |