Step |
Hyp |
Ref |
Expression |
1 |
|
ovmpos.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
2 |
|
elex |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ V ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
6 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 |
7 |
6
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V |
8 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
9 |
1 8
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
11 |
3 9 10
|
nfov |
⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝑦 ) |
12 |
11 6
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 |
13 |
7 12
|
nfim |
⊢ Ⅎ 𝑥 ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) |
14 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 |
15 |
14
|
nfel1 |
⊢ Ⅎ 𝑦 ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V |
16 |
|
nfmpo2 |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
17 |
1 16
|
nfcxfr |
⊢ Ⅎ 𝑦 𝐹 |
18 |
4 17 5
|
nfov |
⊢ Ⅎ 𝑦 ( 𝐴 𝐹 𝐵 ) |
19 |
18 14
|
nfeq |
⊢ Ⅎ 𝑦 ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 |
20 |
15 19
|
nfim |
⊢ Ⅎ 𝑦 ( ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) |
21 |
|
csbeq1a |
⊢ ( 𝑥 = 𝐴 → 𝑅 = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) |
22 |
21
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝑅 ∈ V ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V ) ) |
23 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) ) |
24 |
23 21
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) = 𝑅 ↔ ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) |
25 |
22 24
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑅 ∈ V → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) ↔ ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) ) |
26 |
|
csbeq1a |
⊢ ( 𝑦 = 𝐵 → ⦋ 𝐴 / 𝑥 ⦌ 𝑅 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) |
27 |
26
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V ↔ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V ) ) |
28 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) ) |
29 |
28 26
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ↔ ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) |
30 |
27 29
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ↔ ( ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) ) |
31 |
1
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) |
32 |
31
|
3expia |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 ∈ V → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) ) |
33 |
3 4 5 13 20 25 30 32
|
vtocl2gaf |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) |
34 |
|
csbcom |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 |
35 |
34
|
eleq1i |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ V ↔ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ∈ V ) |
36 |
34
|
eqeq2i |
⊢ ( ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ↔ ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) |
37 |
33 35 36
|
3imtr4g |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ V → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ) ) |
38 |
2 37
|
syl5 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ 𝑉 → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ) ) |
39 |
38
|
3impia |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ∈ 𝑉 ) → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝑅 ) |