Step |
Hyp |
Ref |
Expression |
1 |
|
hofcl.m |
|
2 |
|
hofcl.o |
|
3 |
|
hofcl.d |
|
4 |
|
hofcl.c |
|
5 |
|
hofcl.u |
|
6 |
|
hofcl.h |
|
7 |
|
hofcllem.b |
|
8 |
|
hofcllem.h |
|
9 |
|
hofcllem.x |
|
10 |
|
hofcllem.y |
|
11 |
|
hofcllem.z |
|
12 |
|
hofcllem.w |
|
13 |
|
hofcllem.s |
|
14 |
|
hofcllem.t |
|
15 |
|
hofcllem.m |
|
16 |
|
hofcllem.n |
|
17 |
|
hofcllem.p |
|
18 |
|
hofcllem.q |
|
19 |
|
eqid |
|
20 |
4
|
adantr |
|
21 |
13
|
adantr |
|
22 |
11
|
adantr |
|
23 |
9
|
adantr |
|
24 |
17
|
adantr |
|
25 |
15
|
adantr |
|
26 |
14
|
adantr |
|
27 |
10
|
adantr |
|
28 |
|
simpr |
|
29 |
7 8 19 4 10 12 14 16 18
|
catcocl |
|
30 |
29
|
adantr |
|
31 |
7 8 19 20 23 27 26 28 30
|
catcocl |
|
32 |
7 8 19 20 21 22 23 24 25 26 31
|
catass |
|
33 |
12
|
adantr |
|
34 |
16
|
adantr |
|
35 |
18
|
adantr |
|
36 |
7 8 19 20 23 27 33 28 34 26 35
|
catass |
|
37 |
36
|
oveq1d |
|
38 |
7 8 19 20 23 27 33 28 34
|
catcocl |
|
39 |
7 8 19 20 22 23 33 25 38 26 35
|
catass |
|
40 |
37 39
|
eqtrd |
|
41 |
40
|
oveq1d |
|
42 |
32 41
|
eqtr3d |
|
43 |
42
|
mpteq2dva |
|
44 |
7 8 19 4 13 11 9 17 15
|
catcocl |
|
45 |
1 4 7 8 9 10 13 14 19 44 29
|
hof2val |
|
46 |
1 4 7 8 11 12 13 14 19 17 18
|
hof2val |
|
47 |
1 4 7 8 9 10 11 12 19 15 16
|
hof2val |
|
48 |
46 47
|
oveq12d |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
50 7 8 9 10
|
homfval |
|
52 |
50 7
|
homffn |
|
53 |
52
|
a1i |
|
54 |
|
df-f |
|
55 |
53 6 54
|
sylanbrc |
|
56 |
55 9 10
|
fovrnd |
|
57 |
51 56
|
eqeltrrd |
|
58 |
50 7 8 11 12
|
homfval |
|
59 |
55 11 12
|
fovrnd |
|
60 |
58 59
|
eqeltrrd |
|
61 |
50 7 8 13 14
|
homfval |
|
62 |
55 13 14
|
fovrnd |
|
63 |
61 62
|
eqeltrrd |
|
64 |
7 8 19 20 22 23 33 25 38
|
catcocl |
|
65 |
64
|
fmpttd |
|
66 |
4
|
adantr |
|
67 |
13
|
adantr |
|
68 |
11
|
adantr |
|
69 |
14
|
adantr |
|
70 |
17
|
adantr |
|
71 |
12
|
adantr |
|
72 |
|
simpr |
|
73 |
18
|
adantr |
|
74 |
7 8 19 66 68 71 69 72 73
|
catcocl |
|
75 |
7 8 19 66 67 68 69 70 74
|
catcocl |
|
76 |
75
|
fmpttd |
|
77 |
3 5 49 57 60 63 65 76
|
setcco |
|
78 |
|
eqidd |
|
79 |
|
eqidd |
|
80 |
|
oveq2 |
|
81 |
80
|
oveq1d |
|
82 |
64 78 79 81
|
fmptco |
|
83 |
48 77 82
|
3eqtrd |
|
84 |
43 45 83
|
3eqtr4d |
|