| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hofcl.m |
|
| 2 |
|
hofcl.o |
|
| 3 |
|
hofcl.d |
|
| 4 |
|
hofcl.c |
|
| 5 |
|
hofcl.u |
|
| 6 |
|
hofcl.h |
|
| 7 |
|
hofcllem.b |
|
| 8 |
|
hofcllem.h |
|
| 9 |
|
hofcllem.x |
|
| 10 |
|
hofcllem.y |
|
| 11 |
|
hofcllem.z |
|
| 12 |
|
hofcllem.w |
|
| 13 |
|
hofcllem.s |
|
| 14 |
|
hofcllem.t |
|
| 15 |
|
hofcllem.m |
|
| 16 |
|
hofcllem.n |
|
| 17 |
|
hofcllem.p |
|
| 18 |
|
hofcllem.q |
|
| 19 |
|
eqid |
|
| 20 |
4
|
adantr |
|
| 21 |
13
|
adantr |
|
| 22 |
11
|
adantr |
|
| 23 |
9
|
adantr |
|
| 24 |
17
|
adantr |
|
| 25 |
15
|
adantr |
|
| 26 |
14
|
adantr |
|
| 27 |
10
|
adantr |
|
| 28 |
|
simpr |
|
| 29 |
7 8 19 4 10 12 14 16 18
|
catcocl |
|
| 30 |
29
|
adantr |
|
| 31 |
7 8 19 20 23 27 26 28 30
|
catcocl |
|
| 32 |
7 8 19 20 21 22 23 24 25 26 31
|
catass |
|
| 33 |
12
|
adantr |
|
| 34 |
16
|
adantr |
|
| 35 |
18
|
adantr |
|
| 36 |
7 8 19 20 23 27 33 28 34 26 35
|
catass |
|
| 37 |
36
|
oveq1d |
|
| 38 |
7 8 19 20 23 27 33 28 34
|
catcocl |
|
| 39 |
7 8 19 20 22 23 33 25 38 26 35
|
catass |
|
| 40 |
37 39
|
eqtrd |
|
| 41 |
40
|
oveq1d |
|
| 42 |
32 41
|
eqtr3d |
|
| 43 |
42
|
mpteq2dva |
|
| 44 |
7 8 19 4 13 11 9 17 15
|
catcocl |
|
| 45 |
1 4 7 8 9 10 13 14 19 44 29
|
hof2val |
|
| 46 |
1 4 7 8 11 12 13 14 19 17 18
|
hof2val |
|
| 47 |
1 4 7 8 9 10 11 12 19 15 16
|
hof2val |
|
| 48 |
46 47
|
oveq12d |
|
| 49 |
|
eqid |
|
| 50 |
|
eqid |
|
| 51 |
50 7 8 9 10
|
homfval |
|
| 52 |
50 7
|
homffn |
|
| 53 |
52
|
a1i |
|
| 54 |
|
df-f |
|
| 55 |
53 6 54
|
sylanbrc |
|
| 56 |
55 9 10
|
fovcdmd |
|
| 57 |
51 56
|
eqeltrrd |
|
| 58 |
50 7 8 11 12
|
homfval |
|
| 59 |
55 11 12
|
fovcdmd |
|
| 60 |
58 59
|
eqeltrrd |
|
| 61 |
50 7 8 13 14
|
homfval |
|
| 62 |
55 13 14
|
fovcdmd |
|
| 63 |
61 62
|
eqeltrrd |
|
| 64 |
7 8 19 20 22 23 33 25 38
|
catcocl |
|
| 65 |
64
|
fmpttd |
|
| 66 |
4
|
adantr |
|
| 67 |
13
|
adantr |
|
| 68 |
11
|
adantr |
|
| 69 |
14
|
adantr |
|
| 70 |
17
|
adantr |
|
| 71 |
12
|
adantr |
|
| 72 |
|
simpr |
|
| 73 |
18
|
adantr |
|
| 74 |
7 8 19 66 68 71 69 72 73
|
catcocl |
|
| 75 |
7 8 19 66 67 68 69 70 74
|
catcocl |
|
| 76 |
75
|
fmpttd |
|
| 77 |
3 5 49 57 60 63 65 76
|
setcco |
|
| 78 |
|
eqidd |
|
| 79 |
|
eqidd |
|
| 80 |
|
oveq2 |
|
| 81 |
80
|
oveq1d |
|
| 82 |
64 78 79 81
|
fmptco |
|
| 83 |
48 77 82
|
3eqtrd |
|
| 84 |
43 45 83
|
3eqtr4d |
|