Step |
Hyp |
Ref |
Expression |
1 |
|
yon11.y |
|- Y = ( Yon ` C ) |
2 |
|
yon11.b |
|- B = ( Base ` C ) |
3 |
|
yon11.c |
|- ( ph -> C e. Cat ) |
4 |
|
yon11.p |
|- ( ph -> X e. B ) |
5 |
|
yon11.h |
|- H = ( Hom ` C ) |
6 |
|
yon11.z |
|- ( ph -> Z e. B ) |
7 |
|
yon12.x |
|- .x. = ( comp ` C ) |
8 |
|
yon12.w |
|- ( ph -> W e. B ) |
9 |
|
yon12.f |
|- ( ph -> F e. ( W H Z ) ) |
10 |
|
yon12.g |
|- ( ph -> G e. ( Z H X ) ) |
11 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
12 |
|
eqid |
|- ( HomF ` ( oppCat ` C ) ) = ( HomF ` ( oppCat ` C ) ) |
13 |
1 3 11 12
|
yonval |
|- ( ph -> Y = ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) |
14 |
13
|
fveq2d |
|- ( ph -> ( 1st ` Y ) = ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ) |
15 |
14
|
fveq1d |
|- ( ph -> ( ( 1st ` Y ) ` X ) = ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) |
16 |
15
|
fveq2d |
|- ( ph -> ( 2nd ` ( ( 1st ` Y ) ` X ) ) = ( 2nd ` ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) ) |
17 |
16
|
oveqd |
|- ( ph -> ( Z ( 2nd ` ( ( 1st ` Y ) ` X ) ) W ) = ( Z ( 2nd ` ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) W ) ) |
18 |
17
|
fveq1d |
|- ( ph -> ( ( Z ( 2nd ` ( ( 1st ` Y ) ` X ) ) W ) ` F ) = ( ( Z ( 2nd ` ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) W ) ` F ) ) |
19 |
|
eqid |
|- ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) = ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) |
20 |
11
|
oppccat |
|- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
21 |
3 20
|
syl |
|- ( ph -> ( oppCat ` C ) e. Cat ) |
22 |
|
eqid |
|- ( SetCat ` ran ( Homf ` C ) ) = ( SetCat ` ran ( Homf ` C ) ) |
23 |
|
fvex |
|- ( Homf ` C ) e. _V |
24 |
23
|
rnex |
|- ran ( Homf ` C ) e. _V |
25 |
24
|
a1i |
|- ( ph -> ran ( Homf ` C ) e. _V ) |
26 |
|
ssidd |
|- ( ph -> ran ( Homf ` C ) C_ ran ( Homf ` C ) ) |
27 |
11 12 22 3 25 26
|
oppchofcl |
|- ( ph -> ( HomF ` ( oppCat ` C ) ) e. ( ( C Xc. ( oppCat ` C ) ) Func ( SetCat ` ran ( Homf ` C ) ) ) ) |
28 |
11 2
|
oppcbas |
|- B = ( Base ` ( oppCat ` C ) ) |
29 |
|
eqid |
|- ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) = ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) |
30 |
|
eqid |
|- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
31 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
32 |
5 11
|
oppchom |
|- ( Z ( Hom ` ( oppCat ` C ) ) W ) = ( W H Z ) |
33 |
9 32
|
eleqtrrdi |
|- ( ph -> F e. ( Z ( Hom ` ( oppCat ` C ) ) W ) ) |
34 |
19 2 3 21 27 28 4 29 6 30 31 8 33
|
curf12 |
|- ( ph -> ( ( Z ( 2nd ` ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) W ) ` F ) = ( ( ( Id ` C ) ` X ) ( <. X , Z >. ( 2nd ` ( HomF ` ( oppCat ` C ) ) ) <. X , W >. ) F ) ) |
35 |
18 34
|
eqtrd |
|- ( ph -> ( ( Z ( 2nd ` ( ( 1st ` Y ) ` X ) ) W ) ` F ) = ( ( ( Id ` C ) ` X ) ( <. X , Z >. ( 2nd ` ( HomF ` ( oppCat ` C ) ) ) <. X , W >. ) F ) ) |
36 |
35
|
fveq1d |
|- ( ph -> ( ( ( Z ( 2nd ` ( ( 1st ` Y ) ` X ) ) W ) ` F ) ` G ) = ( ( ( ( Id ` C ) ` X ) ( <. X , Z >. ( 2nd ` ( HomF ` ( oppCat ` C ) ) ) <. X , W >. ) F ) ` G ) ) |
37 |
|
eqid |
|- ( comp ` ( oppCat ` C ) ) = ( comp ` ( oppCat ` C ) ) |
38 |
2 5 31 3 4
|
catidcl |
|- ( ph -> ( ( Id ` C ) ` X ) e. ( X H X ) ) |
39 |
5 11
|
oppchom |
|- ( X ( Hom ` ( oppCat ` C ) ) X ) = ( X H X ) |
40 |
38 39
|
eleqtrrdi |
|- ( ph -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` ( oppCat ` C ) ) X ) ) |
41 |
5 11
|
oppchom |
|- ( X ( Hom ` ( oppCat ` C ) ) Z ) = ( Z H X ) |
42 |
10 41
|
eleqtrrdi |
|- ( ph -> G e. ( X ( Hom ` ( oppCat ` C ) ) Z ) ) |
43 |
12 21 28 30 4 6 4 8 37 40 33 42
|
hof2 |
|- ( ph -> ( ( ( ( Id ` C ) ` X ) ( <. X , Z >. ( 2nd ` ( HomF ` ( oppCat ` C ) ) ) <. X , W >. ) F ) ` G ) = ( ( F ( <. X , Z >. ( comp ` ( oppCat ` C ) ) W ) G ) ( <. X , X >. ( comp ` ( oppCat ` C ) ) W ) ( ( Id ` C ) ` X ) ) ) |
44 |
2 7 11 4 6 8
|
oppcco |
|- ( ph -> ( F ( <. X , Z >. ( comp ` ( oppCat ` C ) ) W ) G ) = ( G ( <. W , Z >. .x. X ) F ) ) |
45 |
44
|
oveq1d |
|- ( ph -> ( ( F ( <. X , Z >. ( comp ` ( oppCat ` C ) ) W ) G ) ( <. X , X >. ( comp ` ( oppCat ` C ) ) W ) ( ( Id ` C ) ` X ) ) = ( ( G ( <. W , Z >. .x. X ) F ) ( <. X , X >. ( comp ` ( oppCat ` C ) ) W ) ( ( Id ` C ) ` X ) ) ) |
46 |
2 7 11 4 4 8
|
oppcco |
|- ( ph -> ( ( G ( <. W , Z >. .x. X ) F ) ( <. X , X >. ( comp ` ( oppCat ` C ) ) W ) ( ( Id ` C ) ` X ) ) = ( ( ( Id ` C ) ` X ) ( <. W , X >. .x. X ) ( G ( <. W , Z >. .x. X ) F ) ) ) |
47 |
2 5 7 3 8 6 4 9 10
|
catcocl |
|- ( ph -> ( G ( <. W , Z >. .x. X ) F ) e. ( W H X ) ) |
48 |
2 5 31 3 8 7 4 47
|
catlid |
|- ( ph -> ( ( ( Id ` C ) ` X ) ( <. W , X >. .x. X ) ( G ( <. W , Z >. .x. X ) F ) ) = ( G ( <. W , Z >. .x. X ) F ) ) |
49 |
45 46 48
|
3eqtrd |
|- ( ph -> ( ( F ( <. X , Z >. ( comp ` ( oppCat ` C ) ) W ) G ) ( <. X , X >. ( comp ` ( oppCat ` C ) ) W ) ( ( Id ` C ) ` X ) ) = ( G ( <. W , Z >. .x. X ) F ) ) |
50 |
36 43 49
|
3eqtrd |
|- ( ph -> ( ( ( Z ( 2nd ` ( ( 1st ` Y ) ` X ) ) W ) ` F ) ` G ) = ( G ( <. W , Z >. .x. X ) F ) ) |