| Step |
Hyp |
Ref |
Expression |
| 1 |
|
yon11.y |
|- Y = ( Yon ` C ) |
| 2 |
|
yon11.b |
|- B = ( Base ` C ) |
| 3 |
|
yon11.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
yon11.p |
|- ( ph -> X e. B ) |
| 5 |
|
yon11.h |
|- H = ( Hom ` C ) |
| 6 |
|
yon11.z |
|- ( ph -> Z e. B ) |
| 7 |
|
yon12.x |
|- .x. = ( comp ` C ) |
| 8 |
|
yon12.w |
|- ( ph -> W e. B ) |
| 9 |
|
yon2.f |
|- ( ph -> F e. ( X H Z ) ) |
| 10 |
|
yon2.g |
|- ( ph -> G e. ( W H X ) ) |
| 11 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
| 12 |
|
eqid |
|- ( HomF ` ( oppCat ` C ) ) = ( HomF ` ( oppCat ` C ) ) |
| 13 |
1 3 11 12
|
yonval |
|- ( ph -> Y = ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) |
| 14 |
13
|
fveq2d |
|- ( ph -> ( 2nd ` Y ) = ( 2nd ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ) |
| 15 |
14
|
oveqd |
|- ( ph -> ( X ( 2nd ` Y ) Z ) = ( X ( 2nd ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) Z ) ) |
| 16 |
15
|
fveq1d |
|- ( ph -> ( ( X ( 2nd ` Y ) Z ) ` F ) = ( ( X ( 2nd ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) Z ) ` F ) ) |
| 17 |
16
|
fveq1d |
|- ( ph -> ( ( ( X ( 2nd ` Y ) Z ) ` F ) ` W ) = ( ( ( X ( 2nd ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) Z ) ` F ) ` W ) ) |
| 18 |
|
eqid |
|- ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) = ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) |
| 19 |
11
|
oppccat |
|- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 20 |
3 19
|
syl |
|- ( ph -> ( oppCat ` C ) e. Cat ) |
| 21 |
|
eqid |
|- ( SetCat ` ran ( Homf ` C ) ) = ( SetCat ` ran ( Homf ` C ) ) |
| 22 |
|
fvex |
|- ( Homf ` C ) e. _V |
| 23 |
22
|
rnex |
|- ran ( Homf ` C ) e. _V |
| 24 |
23
|
a1i |
|- ( ph -> ran ( Homf ` C ) e. _V ) |
| 25 |
|
ssidd |
|- ( ph -> ran ( Homf ` C ) C_ ran ( Homf ` C ) ) |
| 26 |
11 12 21 3 24 25
|
oppchofcl |
|- ( ph -> ( HomF ` ( oppCat ` C ) ) e. ( ( C Xc. ( oppCat ` C ) ) Func ( SetCat ` ran ( Homf ` C ) ) ) ) |
| 27 |
11 2
|
oppcbas |
|- B = ( Base ` ( oppCat ` C ) ) |
| 28 |
|
eqid |
|- ( Id ` ( oppCat ` C ) ) = ( Id ` ( oppCat ` C ) ) |
| 29 |
|
eqid |
|- ( ( X ( 2nd ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) Z ) ` F ) = ( ( X ( 2nd ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) Z ) ` F ) |
| 30 |
18 2 3 20 26 27 5 28 4 6 9 29 8
|
curf2val |
|- ( ph -> ( ( ( X ( 2nd ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) Z ) ` F ) ` W ) = ( F ( <. X , W >. ( 2nd ` ( HomF ` ( oppCat ` C ) ) ) <. Z , W >. ) ( ( Id ` ( oppCat ` C ) ) ` W ) ) ) |
| 31 |
17 30
|
eqtrd |
|- ( ph -> ( ( ( X ( 2nd ` Y ) Z ) ` F ) ` W ) = ( F ( <. X , W >. ( 2nd ` ( HomF ` ( oppCat ` C ) ) ) <. Z , W >. ) ( ( Id ` ( oppCat ` C ) ) ` W ) ) ) |
| 32 |
31
|
fveq1d |
|- ( ph -> ( ( ( ( X ( 2nd ` Y ) Z ) ` F ) ` W ) ` G ) = ( ( F ( <. X , W >. ( 2nd ` ( HomF ` ( oppCat ` C ) ) ) <. Z , W >. ) ( ( Id ` ( oppCat ` C ) ) ` W ) ) ` G ) ) |
| 33 |
|
eqid |
|- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
| 34 |
|
eqid |
|- ( comp ` ( oppCat ` C ) ) = ( comp ` ( oppCat ` C ) ) |
| 35 |
5 11
|
oppchom |
|- ( Z ( Hom ` ( oppCat ` C ) ) X ) = ( X H Z ) |
| 36 |
9 35
|
eleqtrrdi |
|- ( ph -> F e. ( Z ( Hom ` ( oppCat ` C ) ) X ) ) |
| 37 |
27 33 28 20 8
|
catidcl |
|- ( ph -> ( ( Id ` ( oppCat ` C ) ) ` W ) e. ( W ( Hom ` ( oppCat ` C ) ) W ) ) |
| 38 |
5 11
|
oppchom |
|- ( X ( Hom ` ( oppCat ` C ) ) W ) = ( W H X ) |
| 39 |
10 38
|
eleqtrrdi |
|- ( ph -> G e. ( X ( Hom ` ( oppCat ` C ) ) W ) ) |
| 40 |
12 20 27 33 4 8 6 8 34 36 37 39
|
hof2 |
|- ( ph -> ( ( F ( <. X , W >. ( 2nd ` ( HomF ` ( oppCat ` C ) ) ) <. Z , W >. ) ( ( Id ` ( oppCat ` C ) ) ` W ) ) ` G ) = ( ( ( ( Id ` ( oppCat ` C ) ) ` W ) ( <. X , W >. ( comp ` ( oppCat ` C ) ) W ) G ) ( <. Z , X >. ( comp ` ( oppCat ` C ) ) W ) F ) ) |
| 41 |
27 33 28 20 4 34 8 39
|
catlid |
|- ( ph -> ( ( ( Id ` ( oppCat ` C ) ) ` W ) ( <. X , W >. ( comp ` ( oppCat ` C ) ) W ) G ) = G ) |
| 42 |
41
|
oveq1d |
|- ( ph -> ( ( ( ( Id ` ( oppCat ` C ) ) ` W ) ( <. X , W >. ( comp ` ( oppCat ` C ) ) W ) G ) ( <. Z , X >. ( comp ` ( oppCat ` C ) ) W ) F ) = ( G ( <. Z , X >. ( comp ` ( oppCat ` C ) ) W ) F ) ) |
| 43 |
2 7 11 6 4 8
|
oppcco |
|- ( ph -> ( G ( <. Z , X >. ( comp ` ( oppCat ` C ) ) W ) F ) = ( F ( <. W , X >. .x. Z ) G ) ) |
| 44 |
42 43
|
eqtrd |
|- ( ph -> ( ( ( ( Id ` ( oppCat ` C ) ) ` W ) ( <. X , W >. ( comp ` ( oppCat ` C ) ) W ) G ) ( <. Z , X >. ( comp ` ( oppCat ` C ) ) W ) F ) = ( F ( <. W , X >. .x. Z ) G ) ) |
| 45 |
32 40 44
|
3eqtrd |
|- ( ph -> ( ( ( ( X ( 2nd ` Y ) Z ) ` F ) ` W ) ` G ) = ( F ( <. W , X >. .x. Z ) G ) ) |