| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hofpropd.1 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 2 |
|
hofpropd.2 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 3 |
|
hofpropd.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
hofpropd.d |
|- ( ph -> D e. Cat ) |
| 5 |
1
|
homfeqbas |
|- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 6 |
5
|
sqxpeqd |
|- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( Base ` C ) X. ( Base ` C ) ) = ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 9 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 10 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 11 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 12 |
|
xp1st |
|- ( y e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 1st ` y ) e. ( Base ` C ) ) |
| 13 |
12
|
ad2antll |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( 1st ` y ) e. ( Base ` C ) ) |
| 14 |
|
xp1st |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
| 15 |
14
|
ad2antrl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
| 16 |
8 9 10 11 13 15
|
homfeqval |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) = ( ( 1st ` y ) ( Hom ` D ) ( 1st ` x ) ) ) |
| 17 |
|
xp2nd |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
| 18 |
17
|
ad2antrl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
| 19 |
|
xp2nd |
|- ( y e. ( ( Base ` C ) X. ( Base ` C ) ) -> ( 2nd ` y ) e. ( Base ` C ) ) |
| 20 |
19
|
ad2antll |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( 2nd ` y ) e. ( Base ` C ) ) |
| 21 |
8 9 10 11 18 20
|
homfeqval |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) = ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) |
| 22 |
21
|
adantr |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) ) -> ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) = ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) |
| 23 |
8 9 10 11 15 18
|
homfeqval |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) = ( ( 1st ` x ) ( Hom ` D ) ( 2nd ` x ) ) ) |
| 24 |
|
df-ov |
|- ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 25 |
|
df-ov |
|- ( ( 1st ` x ) ( Hom ` D ) ( 2nd ` x ) ) = ( ( Hom ` D ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 26 |
23 24 25
|
3eqtr3g |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) = ( ( Hom ` D ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 27 |
|
1st2nd2 |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 28 |
27
|
ad2antrl |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 29 |
28
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( ( Hom ` C ) ` x ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 30 |
28
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( ( Hom ` D ) ` x ) = ( ( Hom ` D ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 31 |
26 29 30
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( ( Hom ` C ) ` x ) = ( ( Hom ` D ) ` x ) ) |
| 32 |
31
|
adantr |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` x ) = ( ( Hom ` D ) ` x ) ) |
| 33 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 34 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 35 |
11
|
ad2antrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 36 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 37 |
13
|
ad2antrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 1st ` y ) e. ( Base ` C ) ) |
| 38 |
15
|
ad2antrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
| 39 |
20
|
ad2antrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 2nd ` y ) e. ( Base ` C ) ) |
| 40 |
|
simplrl |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) ) |
| 41 |
28
|
ad2antrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 42 |
41
|
oveq1d |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( x ( comp ` C ) ( 2nd ` y ) ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` y ) ) ) |
| 43 |
42
|
oveqd |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) = ( g ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` y ) ) h ) ) |
| 44 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> C e. Cat ) |
| 45 |
18
|
ad2antrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( 2nd ` x ) e. ( Base ` C ) ) |
| 46 |
29
|
adantr |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` x ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 47 |
46 24
|
eqtr4di |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( ( Hom ` C ) ` x ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 48 |
47
|
eleq2d |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( h e. ( ( Hom ` C ) ` x ) <-> h e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) ) |
| 49 |
48
|
biimpa |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> h e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 50 |
|
simplrr |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 51 |
8 9 33 44 38 45 39 49 50
|
catcocl |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` y ) ) h ) e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 52 |
43 51
|
eqeltrd |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) e. ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) |
| 53 |
8 9 33 34 35 36 37 38 39 40 52
|
comfeqval |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) = ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` D ) ( 2nd ` y ) ) f ) ) |
| 54 |
8 9 33 34 35 36 38 45 39 49 50
|
comfeqval |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` C ) ( 2nd ` y ) ) h ) = ( g ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` D ) ( 2nd ` y ) ) h ) ) |
| 55 |
41
|
oveq1d |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( x ( comp ` D ) ( 2nd ` y ) ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` D ) ( 2nd ` y ) ) ) |
| 56 |
55
|
oveqd |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( x ( comp ` D ) ( 2nd ` y ) ) h ) = ( g ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( comp ` D ) ( 2nd ` y ) ) h ) ) |
| 57 |
54 43 56
|
3eqtr4d |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) = ( g ( x ( comp ` D ) ( 2nd ` y ) ) h ) ) |
| 58 |
57
|
oveq1d |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` D ) ( 2nd ` y ) ) f ) = ( ( g ( x ( comp ` D ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` D ) ( 2nd ` y ) ) f ) ) |
| 59 |
53 58
|
eqtrd |
|- ( ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) /\ h e. ( ( Hom ` C ) ` x ) ) -> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) = ( ( g ( x ( comp ` D ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` D ) ( 2nd ` y ) ) f ) ) |
| 60 |
32 59
|
mpteq12dva |
|- ( ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) /\ ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) /\ g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) -> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) = ( h e. ( ( Hom ` D ) ` x ) |-> ( ( g ( x ( comp ` D ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` D ) ( 2nd ` y ) ) f ) ) ) |
| 61 |
16 22 60
|
mpoeq123dva |
|- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` C ) ) /\ y e. ( ( Base ` C ) X. ( Base ` C ) ) ) ) -> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) = ( f e. ( ( 1st ` y ) ( Hom ` D ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` D ) ` x ) |-> ( ( g ( x ( comp ` D ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` D ) ( 2nd ` y ) ) f ) ) ) ) |
| 62 |
6 7 61
|
mpoeq123dva |
|- ( ph -> ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) = ( x e. ( ( Base ` D ) X. ( Base ` D ) ) , y e. ( ( Base ` D ) X. ( Base ` D ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` D ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` D ) ` x ) |-> ( ( g ( x ( comp ` D ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` D ) ( 2nd ` y ) ) f ) ) ) ) ) |
| 63 |
1 62
|
opeq12d |
|- ( ph -> <. ( Homf ` C ) , ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) >. = <. ( Homf ` D ) , ( x e. ( ( Base ` D ) X. ( Base ` D ) ) , y e. ( ( Base ` D ) X. ( Base ` D ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` D ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` D ) ` x ) |-> ( ( g ( x ( comp ` D ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` D ) ( 2nd ` y ) ) f ) ) ) ) >. ) |
| 64 |
|
eqid |
|- ( HomF ` C ) = ( HomF ` C ) |
| 65 |
64 3 8 9 33
|
hofval |
|- ( ph -> ( HomF ` C ) = <. ( Homf ` C ) , ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) >. ) |
| 66 |
|
eqid |
|- ( HomF ` D ) = ( HomF ` D ) |
| 67 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 68 |
66 4 67 10 34
|
hofval |
|- ( ph -> ( HomF ` D ) = <. ( Homf ` D ) , ( x e. ( ( Base ` D ) X. ( Base ` D ) ) , y e. ( ( Base ` D ) X. ( Base ` D ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` D ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` D ) ` x ) |-> ( ( g ( x ( comp ` D ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` D ) ( 2nd ` y ) ) f ) ) ) ) >. ) |
| 69 |
63 65 68
|
3eqtr4d |
|- ( ph -> ( HomF ` C ) = ( HomF ` D ) ) |