Step |
Hyp |
Ref |
Expression |
1 |
|
hofpropd.1 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
2 |
|
hofpropd.2 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
3 |
|
hofpropd.c |
|- ( ph -> C e. Cat ) |
4 |
|
hofpropd.d |
|- ( ph -> D e. Cat ) |
5 |
1
|
oppchomfpropd |
|- ( ph -> ( Homf ` ( oppCat ` C ) ) = ( Homf ` ( oppCat ` D ) ) ) |
6 |
1 2
|
oppccomfpropd |
|- ( ph -> ( comf ` ( oppCat ` C ) ) = ( comf ` ( oppCat ` D ) ) ) |
7 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
8 |
7
|
oppccat |
|- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
9 |
3 8
|
syl |
|- ( ph -> ( oppCat ` C ) e. Cat ) |
10 |
|
eqid |
|- ( oppCat ` D ) = ( oppCat ` D ) |
11 |
10
|
oppccat |
|- ( D e. Cat -> ( oppCat ` D ) e. Cat ) |
12 |
4 11
|
syl |
|- ( ph -> ( oppCat ` D ) e. Cat ) |
13 |
|
eqid |
|- ( HomF ` ( oppCat ` C ) ) = ( HomF ` ( oppCat ` C ) ) |
14 |
|
eqid |
|- ( SetCat ` ran ( Homf ` C ) ) = ( SetCat ` ran ( Homf ` C ) ) |
15 |
|
fvex |
|- ( Homf ` C ) e. _V |
16 |
15
|
rnex |
|- ran ( Homf ` C ) e. _V |
17 |
16
|
a1i |
|- ( ph -> ran ( Homf ` C ) e. _V ) |
18 |
|
ssidd |
|- ( ph -> ran ( Homf ` C ) C_ ran ( Homf ` C ) ) |
19 |
7 13 14 3 17 18
|
oppchofcl |
|- ( ph -> ( HomF ` ( oppCat ` C ) ) e. ( ( C Xc. ( oppCat ` C ) ) Func ( SetCat ` ran ( Homf ` C ) ) ) ) |
20 |
1 2 5 6 3 4 9 12 19
|
curfpropd |
|- ( ph -> ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) = ( <. D , ( oppCat ` D ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) |
21 |
5 6 9 12
|
hofpropd |
|- ( ph -> ( HomF ` ( oppCat ` C ) ) = ( HomF ` ( oppCat ` D ) ) ) |
22 |
21
|
oveq2d |
|- ( ph -> ( <. D , ( oppCat ` D ) >. curryF ( HomF ` ( oppCat ` C ) ) ) = ( <. D , ( oppCat ` D ) >. curryF ( HomF ` ( oppCat ` D ) ) ) ) |
23 |
20 22
|
eqtrd |
|- ( ph -> ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) = ( <. D , ( oppCat ` D ) >. curryF ( HomF ` ( oppCat ` D ) ) ) ) |
24 |
|
eqid |
|- ( Yon ` C ) = ( Yon ` C ) |
25 |
24 3 7 13
|
yonval |
|- ( ph -> ( Yon ` C ) = ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) |
26 |
|
eqid |
|- ( Yon ` D ) = ( Yon ` D ) |
27 |
|
eqid |
|- ( HomF ` ( oppCat ` D ) ) = ( HomF ` ( oppCat ` D ) ) |
28 |
26 4 10 27
|
yonval |
|- ( ph -> ( Yon ` D ) = ( <. D , ( oppCat ` D ) >. curryF ( HomF ` ( oppCat ` D ) ) ) ) |
29 |
23 25 28
|
3eqtr4d |
|- ( ph -> ( Yon ` C ) = ( Yon ` D ) ) |