| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curfpropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
| 2 |
|
curfpropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
| 3 |
|
curfpropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 |
|
curfpropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 5 |
|
curfpropd.a |
|- ( ph -> A e. Cat ) |
| 6 |
|
curfpropd.b |
|- ( ph -> B e. Cat ) |
| 7 |
|
curfpropd.c |
|- ( ph -> C e. Cat ) |
| 8 |
|
curfpropd.d |
|- ( ph -> D e. Cat ) |
| 9 |
|
curfpropd.f |
|- ( ph -> F e. ( ( A Xc. C ) Func E ) ) |
| 10 |
1
|
homfeqbas |
|- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
| 11 |
3
|
homfeqbas |
|- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ x e. ( Base ` A ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 13 |
12
|
mpteq1d |
|- ( ( ph /\ x e. ( Base ` A ) ) -> ( y e. ( Base ` C ) |-> ( x ( 1st ` F ) y ) ) = ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) ) |
| 14 |
12
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` A ) ) /\ y e. ( Base ` C ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 15 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 16 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 17 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 18 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 19 |
|
simprl |
|- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
| 20 |
|
simprr |
|- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> z e. ( Base ` C ) ) |
| 21 |
15 16 17 18 19 20
|
homfeqval |
|- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( y ( Hom ` C ) z ) = ( y ( Hom ` D ) z ) ) |
| 22 |
1 2 5 6
|
cidpropd |
|- ( ph -> ( Id ` A ) = ( Id ` B ) ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( Id ` A ) = ( Id ` B ) ) |
| 24 |
23
|
fveq1d |
|- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( ( Id ` A ) ` x ) = ( ( Id ` B ) ` x ) ) |
| 25 |
24
|
oveq1d |
|- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) = ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) |
| 26 |
21 25
|
mpteq12dv |
|- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) |
| 27 |
12 14 26
|
mpoeq123dva |
|- ( ( ph /\ x e. ( Base ` A ) ) -> ( y e. ( Base ` C ) , z e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) ) |
| 28 |
13 27
|
opeq12d |
|- ( ( ph /\ x e. ( Base ` A ) ) -> <. ( y e. ( Base ` C ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` C ) , z e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. = <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) |
| 29 |
10 28
|
mpteq12dva |
|- ( ph -> ( x e. ( Base ` A ) |-> <. ( y e. ( Base ` C ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` C ) , z e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) = ( x e. ( Base ` B ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) ) |
| 30 |
10
|
adantr |
|- ( ( ph /\ x e. ( Base ` A ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 31 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 32 |
|
eqid |
|- ( Hom ` A ) = ( Hom ` A ) |
| 33 |
|
eqid |
|- ( Hom ` B ) = ( Hom ` B ) |
| 34 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( Homf ` A ) = ( Homf ` B ) ) |
| 35 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> x e. ( Base ` A ) ) |
| 36 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> y e. ( Base ` A ) ) |
| 37 |
31 32 33 34 35 36
|
homfeqval |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
| 38 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) /\ g e. ( x ( Hom ` A ) y ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 39 |
3 4 7 8
|
cidpropd |
|- ( ph -> ( Id ` C ) = ( Id ` D ) ) |
| 40 |
39
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) /\ g e. ( x ( Hom ` A ) y ) ) /\ z e. ( Base ` C ) ) -> ( Id ` C ) = ( Id ` D ) ) |
| 41 |
40
|
fveq1d |
|- ( ( ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) /\ g e. ( x ( Hom ` A ) y ) ) /\ z e. ( Base ` C ) ) -> ( ( Id ` C ) ` z ) = ( ( Id ` D ) ` z ) ) |
| 42 |
41
|
oveq2d |
|- ( ( ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) /\ g e. ( x ( Hom ` A ) y ) ) /\ z e. ( Base ` C ) ) -> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) = ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) |
| 43 |
38 42
|
mpteq12dva |
|- ( ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) /\ g e. ( x ( Hom ` A ) y ) ) -> ( z e. ( Base ` C ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) ) = ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) |
| 44 |
37 43
|
mpteq12dva |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( g e. ( x ( Hom ` A ) y ) |-> ( z e. ( Base ` C ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) ) ) = ( g e. ( x ( Hom ` B ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) |
| 45 |
10 30 44
|
mpoeq123dva |
|- ( ph -> ( x e. ( Base ` A ) , y e. ( Base ` A ) |-> ( g e. ( x ( Hom ` A ) y ) |-> ( z e. ( Base ` C ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) ) ) ) = ( x e. ( Base ` B ) , y e. ( Base ` B ) |-> ( g e. ( x ( Hom ` B ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) ) |
| 46 |
29 45
|
opeq12d |
|- ( ph -> <. ( x e. ( Base ` A ) |-> <. ( y e. ( Base ` C ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` C ) , z e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` A ) , y e. ( Base ` A ) |-> ( g e. ( x ( Hom ` A ) y ) |-> ( z e. ( Base ` C ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) ) ) ) >. = <. ( x e. ( Base ` B ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` B ) , y e. ( Base ` B ) |-> ( g e. ( x ( Hom ` B ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. ) |
| 47 |
|
eqid |
|- ( <. A , C >. curryF F ) = ( <. A , C >. curryF F ) |
| 48 |
|
eqid |
|- ( Id ` A ) = ( Id ` A ) |
| 49 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 50 |
47 31 5 7 9 15 16 48 32 49
|
curfval |
|- ( ph -> ( <. A , C >. curryF F ) = <. ( x e. ( Base ` A ) |-> <. ( y e. ( Base ` C ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` C ) , z e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` A ) , y e. ( Base ` A ) |-> ( g e. ( x ( Hom ` A ) y ) |-> ( z e. ( Base ` C ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) ) ) ) >. ) |
| 51 |
|
eqid |
|- ( <. B , D >. curryF F ) = ( <. B , D >. curryF F ) |
| 52 |
|
eqid |
|- ( Base ` B ) = ( Base ` B ) |
| 53 |
1 2 3 4 5 6 7 8
|
xpcpropd |
|- ( ph -> ( A Xc. C ) = ( B Xc. D ) ) |
| 54 |
53
|
oveq1d |
|- ( ph -> ( ( A Xc. C ) Func E ) = ( ( B Xc. D ) Func E ) ) |
| 55 |
9 54
|
eleqtrd |
|- ( ph -> F e. ( ( B Xc. D ) Func E ) ) |
| 56 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 57 |
|
eqid |
|- ( Id ` B ) = ( Id ` B ) |
| 58 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 59 |
51 52 6 8 55 56 17 57 33 58
|
curfval |
|- ( ph -> ( <. B , D >. curryF F ) = <. ( x e. ( Base ` B ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` B ) , y e. ( Base ` B ) |-> ( g e. ( x ( Hom ` B ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. ) |
| 60 |
46 50 59
|
3eqtr4d |
|- ( ph -> ( <. A , C >. curryF F ) = ( <. B , D >. curryF F ) ) |