| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curfpropd.1 |
|
| 2 |
|
curfpropd.2 |
|
| 3 |
|
curfpropd.3 |
|
| 4 |
|
curfpropd.4 |
|
| 5 |
|
curfpropd.a |
|
| 6 |
|
curfpropd.b |
|
| 7 |
|
curfpropd.c |
|
| 8 |
|
curfpropd.d |
|
| 9 |
|
curfpropd.f |
|
| 10 |
1
|
homfeqbas |
|
| 11 |
3
|
homfeqbas |
|
| 12 |
11
|
adantr |
|
| 13 |
12
|
mpteq1d |
|
| 14 |
12
|
adantr |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
3
|
ad2antrr |
|
| 19 |
|
simprl |
|
| 20 |
|
simprr |
|
| 21 |
15 16 17 18 19 20
|
homfeqval |
|
| 22 |
1 2 5 6
|
cidpropd |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
23
|
fveq1d |
|
| 25 |
24
|
oveq1d |
|
| 26 |
21 25
|
mpteq12dv |
|
| 27 |
12 14 26
|
mpoeq123dva |
|
| 28 |
13 27
|
opeq12d |
|
| 29 |
10 28
|
mpteq12dva |
|
| 30 |
10
|
adantr |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
1
|
adantr |
|
| 35 |
|
simprl |
|
| 36 |
|
simprr |
|
| 37 |
31 32 33 34 35 36
|
homfeqval |
|
| 38 |
11
|
ad2antrr |
|
| 39 |
3 4 7 8
|
cidpropd |
|
| 40 |
39
|
ad3antrrr |
|
| 41 |
40
|
fveq1d |
|
| 42 |
41
|
oveq2d |
|
| 43 |
38 42
|
mpteq12dva |
|
| 44 |
37 43
|
mpteq12dva |
|
| 45 |
10 30 44
|
mpoeq123dva |
|
| 46 |
29 45
|
opeq12d |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
47 31 5 7 9 15 16 48 32 49
|
curfval |
|
| 51 |
|
eqid |
|
| 52 |
|
eqid |
|
| 53 |
1 2 3 4 5 6 7 8
|
xpcpropd |
|
| 54 |
53
|
oveq1d |
|
| 55 |
9 54
|
eleqtrd |
|
| 56 |
|
eqid |
|
| 57 |
|
eqid |
|
| 58 |
|
eqid |
|
| 59 |
51 52 6 8 55 56 17 57 33 58
|
curfval |
|
| 60 |
46 50 59
|
3eqtr4d |
|