| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curfval.g |
|
| 2 |
|
curfval.a |
|
| 3 |
|
curfval.c |
|
| 4 |
|
curfval.d |
|
| 5 |
|
curfval.f |
|
| 6 |
|
curfval.b |
|
| 7 |
|
curfval.j |
|
| 8 |
|
curfval.1 |
|
| 9 |
|
curfval.h |
|
| 10 |
|
curfval.i |
|
| 11 |
|
df-curf |
|
| 12 |
11
|
a1i |
|
| 13 |
|
fvexd |
|
| 14 |
|
simprl |
|
| 15 |
14
|
fveq2d |
|
| 16 |
|
op1stg |
|
| 17 |
3 4 16
|
syl2anc |
|
| 18 |
17
|
adantr |
|
| 19 |
15 18
|
eqtrd |
|
| 20 |
|
fvexd |
|
| 21 |
14
|
adantr |
|
| 22 |
21
|
fveq2d |
|
| 23 |
|
op2ndg |
|
| 24 |
3 4 23
|
syl2anc |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
22 25
|
eqtrd |
|
| 27 |
|
simplr |
|
| 28 |
27
|
fveq2d |
|
| 29 |
28 2
|
eqtr4di |
|
| 30 |
|
simpr |
|
| 31 |
30
|
fveq2d |
|
| 32 |
31 6
|
eqtr4di |
|
| 33 |
|
simprr |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
34
|
fveq2d |
|
| 36 |
35
|
oveqd |
|
| 37 |
32 36
|
mpteq12dv |
|
| 38 |
30
|
fveq2d |
|
| 39 |
38 7
|
eqtr4di |
|
| 40 |
39
|
oveqd |
|
| 41 |
34
|
fveq2d |
|
| 42 |
41
|
oveqd |
|
| 43 |
27
|
fveq2d |
|
| 44 |
43 8
|
eqtr4di |
|
| 45 |
44
|
fveq1d |
|
| 46 |
|
eqidd |
|
| 47 |
42 45 46
|
oveq123d |
|
| 48 |
40 47
|
mpteq12dv |
|
| 49 |
32 32 48
|
mpoeq123dv |
|
| 50 |
37 49
|
opeq12d |
|
| 51 |
29 50
|
mpteq12dv |
|
| 52 |
27
|
fveq2d |
|
| 53 |
52 9
|
eqtr4di |
|
| 54 |
53
|
oveqd |
|
| 55 |
41
|
oveqd |
|
| 56 |
30
|
fveq2d |
|
| 57 |
56 10
|
eqtr4di |
|
| 58 |
57
|
fveq1d |
|
| 59 |
55 46 58
|
oveq123d |
|
| 60 |
32 59
|
mpteq12dv |
|
| 61 |
54 60
|
mpteq12dv |
|
| 62 |
29 29 61
|
mpoeq123dv |
|
| 63 |
51 62
|
opeq12d |
|
| 64 |
20 26 63
|
csbied2 |
|
| 65 |
13 19 64
|
csbied2 |
|
| 66 |
|
opex |
|
| 67 |
66
|
a1i |
|
| 68 |
5
|
elexd |
|
| 69 |
|
opex |
|
| 70 |
69
|
a1i |
|
| 71 |
12 65 67 68 70
|
ovmpod |
|
| 72 |
1 71
|
eqtrid |
|