Metamath Proof Explorer


Theorem curfval

Description: Value of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses curfval.g G=CDcurryFF
curfval.a A=BaseC
curfval.c φCCat
curfval.d φDCat
curfval.f φFC×cDFuncE
curfval.b B=BaseD
curfval.j J=HomD
curfval.1 1˙=IdC
curfval.h H=HomC
curfval.i I=IdD
Assertion curfval φG=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzgxA,yAgxHyzBgxz2ndFyzIz

Proof

Step Hyp Ref Expression
1 curfval.g G=CDcurryFF
2 curfval.a A=BaseC
3 curfval.c φCCat
4 curfval.d φDCat
5 curfval.f φFC×cDFuncE
6 curfval.b B=BaseD
7 curfval.j J=HomD
8 curfval.1 1˙=IdC
9 curfval.h H=HomC
10 curfval.i I=IdD
11 df-curf curryF=eV,fV1ste/c2nde/dxBasecyBasedx1stfyyBased,zBasedgyHomdzIdcxxy2ndfxzgxBasec,yBasecgxHomcyzBasedgxz2ndfyzIddz
12 11 a1i φcurryF=eV,fV1ste/c2nde/dxBasecyBasedx1stfyyBased,zBasedgyHomdzIdcxxy2ndfxzgxBasec,yBasecgxHomcyzBasedgxz2ndfyzIddz
13 fvexd φe=CDf=F1steV
14 simprl φe=CDf=Fe=CD
15 14 fveq2d φe=CDf=F1ste=1stCD
16 op1stg CCatDCat1stCD=C
17 3 4 16 syl2anc φ1stCD=C
18 17 adantr φe=CDf=F1stCD=C
19 15 18 eqtrd φe=CDf=F1ste=C
20 fvexd φe=CDf=Fc=C2ndeV
21 14 adantr φe=CDf=Fc=Ce=CD
22 21 fveq2d φe=CDf=Fc=C2nde=2ndCD
23 op2ndg CCatDCat2ndCD=D
24 3 4 23 syl2anc φ2ndCD=D
25 24 ad2antrr φe=CDf=Fc=C2ndCD=D
26 22 25 eqtrd φe=CDf=Fc=C2nde=D
27 simplr φe=CDf=Fc=Cd=Dc=C
28 27 fveq2d φe=CDf=Fc=Cd=DBasec=BaseC
29 28 2 eqtr4di φe=CDf=Fc=Cd=DBasec=A
30 simpr φe=CDf=Fc=Cd=Dd=D
31 30 fveq2d φe=CDf=Fc=Cd=DBased=BaseD
32 31 6 eqtr4di φe=CDf=Fc=Cd=DBased=B
33 simprr φe=CDf=Ff=F
34 33 ad2antrr φe=CDf=Fc=Cd=Df=F
35 34 fveq2d φe=CDf=Fc=Cd=D1stf=1stF
36 35 oveqd φe=CDf=Fc=Cd=Dx1stfy=x1stFy
37 32 36 mpteq12dv φe=CDf=Fc=Cd=DyBasedx1stfy=yBx1stFy
38 30 fveq2d φe=CDf=Fc=Cd=DHomd=HomD
39 38 7 eqtr4di φe=CDf=Fc=Cd=DHomd=J
40 39 oveqd φe=CDf=Fc=Cd=DyHomdz=yJz
41 34 fveq2d φe=CDf=Fc=Cd=D2ndf=2ndF
42 41 oveqd φe=CDf=Fc=Cd=Dxy2ndfxz=xy2ndFxz
43 27 fveq2d φe=CDf=Fc=Cd=DIdc=IdC
44 43 8 eqtr4di φe=CDf=Fc=Cd=DIdc=1˙
45 44 fveq1d φe=CDf=Fc=Cd=DIdcx=1˙x
46 eqidd φe=CDf=Fc=Cd=Dg=g
47 42 45 46 oveq123d φe=CDf=Fc=Cd=DIdcxxy2ndfxzg=1˙xxy2ndFxzg
48 40 47 mpteq12dv φe=CDf=Fc=Cd=DgyHomdzIdcxxy2ndfxzg=gyJz1˙xxy2ndFxzg
49 32 32 48 mpoeq123dv φe=CDf=Fc=Cd=DyBased,zBasedgyHomdzIdcxxy2ndfxzg=yB,zBgyJz1˙xxy2ndFxzg
50 37 49 opeq12d φe=CDf=Fc=Cd=DyBasedx1stfyyBased,zBasedgyHomdzIdcxxy2ndfxzg=yBx1stFyyB,zBgyJz1˙xxy2ndFxzg
51 29 50 mpteq12dv φe=CDf=Fc=Cd=DxBasecyBasedx1stfyyBased,zBasedgyHomdzIdcxxy2ndfxzg=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzg
52 27 fveq2d φe=CDf=Fc=Cd=DHomc=HomC
53 52 9 eqtr4di φe=CDf=Fc=Cd=DHomc=H
54 53 oveqd φe=CDf=Fc=Cd=DxHomcy=xHy
55 41 oveqd φe=CDf=Fc=Cd=Dxz2ndfyz=xz2ndFyz
56 30 fveq2d φe=CDf=Fc=Cd=DIdd=IdD
57 56 10 eqtr4di φe=CDf=Fc=Cd=DIdd=I
58 57 fveq1d φe=CDf=Fc=Cd=DIddz=Iz
59 55 46 58 oveq123d φe=CDf=Fc=Cd=Dgxz2ndfyzIddz=gxz2ndFyzIz
60 32 59 mpteq12dv φe=CDf=Fc=Cd=DzBasedgxz2ndfyzIddz=zBgxz2ndFyzIz
61 54 60 mpteq12dv φe=CDf=Fc=Cd=DgxHomcyzBasedgxz2ndfyzIddz=gxHyzBgxz2ndFyzIz
62 29 29 61 mpoeq123dv φe=CDf=Fc=Cd=DxBasec,yBasecgxHomcyzBasedgxz2ndfyzIddz=xA,yAgxHyzBgxz2ndFyzIz
63 51 62 opeq12d φe=CDf=Fc=Cd=DxBasecyBasedx1stfyyBased,zBasedgyHomdzIdcxxy2ndfxzgxBasec,yBasecgxHomcyzBasedgxz2ndfyzIddz=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzgxA,yAgxHyzBgxz2ndFyzIz
64 20 26 63 csbied2 φe=CDf=Fc=C2nde/dxBasecyBasedx1stfyyBased,zBasedgyHomdzIdcxxy2ndfxzgxBasec,yBasecgxHomcyzBasedgxz2ndfyzIddz=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzgxA,yAgxHyzBgxz2ndFyzIz
65 13 19 64 csbied2 φe=CDf=F1ste/c2nde/dxBasecyBasedx1stfyyBased,zBasedgyHomdzIdcxxy2ndfxzgxBasec,yBasecgxHomcyzBasedgxz2ndfyzIddz=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzgxA,yAgxHyzBgxz2ndFyzIz
66 opex CDV
67 66 a1i φCDV
68 5 elexd φFV
69 opex xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzgxA,yAgxHyzBgxz2ndFyzIzV
70 69 a1i φxAyBx1stFyyB,zBgyJz1˙xxy2ndFxzgxA,yAgxHyzBgxz2ndFyzIzV
71 12 65 67 68 70 ovmpod φCDcurryFF=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzgxA,yAgxHyzBgxz2ndFyzIz
72 1 71 eqtrid φG=xAyBx1stFyyB,zBgyJz1˙xxy2ndFxzgxA,yAgxHyzBgxz2ndFyzIz