| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curfval.g |
⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) |
| 2 |
|
curfval.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
curfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
curfval.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 5 |
|
curfval.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 6 |
|
curfval.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 7 |
|
curfval.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
| 8 |
|
curfval.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 9 |
|
curfval.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 10 |
|
curfval.i |
⊢ 𝐼 = ( Id ‘ 𝐷 ) |
| 11 |
|
df-curf |
⊢ curryF = ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 1st ‘ 𝑒 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑒 ) / 𝑑 ⦌ 〈 ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → curryF = ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 1st ‘ 𝑒 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑒 ) / 𝑑 ⦌ 〈 ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) 〉 ) ) |
| 13 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → ( 1st ‘ 𝑒 ) ∈ V ) |
| 14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → 𝑒 = 〈 𝐶 , 𝐷 〉 ) |
| 15 |
14
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → ( 1st ‘ 𝑒 ) = ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 16 |
|
op1stg |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
| 17 |
3 4 16
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → ( 1st ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐶 ) |
| 19 |
15 18
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → ( 1st ‘ 𝑒 ) = 𝐶 ) |
| 20 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 𝑒 ) ∈ V ) |
| 21 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → 𝑒 = 〈 𝐶 , 𝐷 〉 ) |
| 22 |
21
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 𝑒 ) = ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) ) |
| 23 |
|
op2ndg |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
| 24 |
3 4 23
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 〈 𝐶 , 𝐷 〉 ) = 𝐷 ) |
| 26 |
22 25
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → ( 2nd ‘ 𝑒 ) = 𝐷 ) |
| 27 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑐 = 𝐶 ) |
| 28 |
27
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
| 29 |
28 2
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑐 ) = 𝐴 ) |
| 30 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) |
| 31 |
30
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑑 ) = ( Base ‘ 𝐷 ) ) |
| 32 |
31 6
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑑 ) = 𝐵 ) |
| 33 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → 𝑓 = 𝐹 ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑓 = 𝐹 ) |
| 35 |
34
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 1st ‘ 𝑓 ) = ( 1st ‘ 𝐹 ) ) |
| 36 |
35
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 37 |
32 36
|
mpteq12dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) ) |
| 38 |
30
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Hom ‘ 𝑑 ) = ( Hom ‘ 𝐷 ) ) |
| 39 |
38 7
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Hom ‘ 𝑑 ) = 𝐽 ) |
| 40 |
39
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) = ( 𝑦 𝐽 𝑧 ) ) |
| 41 |
34
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 2nd ‘ 𝑓 ) = ( 2nd ‘ 𝐹 ) ) |
| 42 |
41
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) ) |
| 43 |
27
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Id ‘ 𝑐 ) = ( Id ‘ 𝐶 ) ) |
| 44 |
43 8
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Id ‘ 𝑐 ) = 1 ) |
| 45 |
44
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) = ( 1 ‘ 𝑥 ) ) |
| 46 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 𝑔 = 𝑔 ) |
| 47 |
42 45 46
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) = ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) |
| 48 |
40 47
|
mpteq12dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) |
| 49 |
32 32 48
|
mpoeq123dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) ) |
| 50 |
37 49
|
opeq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |
| 51 |
29 50
|
mpteq12dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ) |
| 52 |
27
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
| 53 |
52 9
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 54 |
53
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 55 |
41
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) = ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ) |
| 56 |
30
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Id ‘ 𝑑 ) = ( Id ‘ 𝐷 ) ) |
| 57 |
56 10
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( Id ‘ 𝑑 ) = 𝐼 ) |
| 58 |
57
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) = ( 𝐼 ‘ 𝑧 ) ) |
| 59 |
55 46 58
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) = ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) |
| 60 |
32 59
|
mpteq12dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
| 61 |
54 60
|
mpteq12dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) = ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) |
| 62 |
29 29 61
|
mpoeq123dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) ) |
| 63 |
51 62
|
opeq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) ∧ 𝑑 = 𝐷 ) → 〈 ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) 〉 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 64 |
20 26 63
|
csbied2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑐 = 𝐶 ) → ⦋ ( 2nd ‘ 𝑒 ) / 𝑑 ⦌ 〈 ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) 〉 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 65 |
13 19 64
|
csbied2 |
⊢ ( ( 𝜑 ∧ ( 𝑒 = 〈 𝐶 , 𝐷 〉 ∧ 𝑓 = 𝐹 ) ) → ⦋ ( 1st ‘ 𝑒 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑒 ) / 𝑑 ⦌ 〈 ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑥 ( 1st ‘ 𝑓 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝑑 ) , 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝑓 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝑑 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝑓 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝑑 ) ‘ 𝑧 ) ) ) ) ) 〉 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 66 |
|
opex |
⊢ 〈 𝐶 , 𝐷 〉 ∈ V |
| 67 |
66
|
a1i |
⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ V ) |
| 68 |
5
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 69 |
|
opex |
⊢ 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ∈ V |
| 70 |
69
|
a1i |
⊢ ( 𝜑 → 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ∈ V ) |
| 71 |
12 65 67 68 70
|
ovmpod |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 72 |
1 71
|
eqtrid |
⊢ ( 𝜑 → 𝐺 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |