Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbied2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| csbied2.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| csbied2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝐶 = 𝐷 ) | ||
| Assertion | csbied2 | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbied2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | csbied2.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | csbied2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝐶 = 𝐷 ) | |
| 4 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 5 | 4 2 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐵 ) |
| 6 | 5 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐶 = 𝐷 ) |
| 7 | 1 6 | csbied | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) |