Metamath Proof Explorer


Theorem csbied2

Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses csbied2.1 φAV
csbied2.2 φA=B
csbied2.3 φx=BC=D
Assertion csbied2 φA/xC=D

Proof

Step Hyp Ref Expression
1 csbied2.1 φAV
2 csbied2.2 φA=B
3 csbied2.3 φx=BC=D
4 id x=Ax=A
5 4 2 sylan9eqr φx=Ax=B
6 5 3 syldan φx=AC=D
7 1 6 csbied φA/xC=D