Metamath Proof Explorer


Theorem csbied

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014) (Revised by Mario Carneiro, 13-Oct-2016) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypotheses csbied.1 φAV
csbied.2 φx=AB=C
Assertion csbied φA/xB=C

Proof

Step Hyp Ref Expression
1 csbied.1 φAV
2 csbied.2 φx=AB=C
3 df-csb A/xB=y|[˙A/x]˙yB
4 2 eleq2d φx=AzBzC
5 1 4 sbcied φ[˙A/x]˙zBzC
6 5 alrimiv φz[˙A/x]˙zBzC
7 df-clab zy|[˙A/x]˙yBzy[˙A/x]˙yB
8 eleq1w y=zyBzB
9 8 sbcbidv y=z[˙A/x]˙yB[˙A/x]˙zB
10 9 sbievw zy[˙A/x]˙yB[˙A/x]˙zB
11 7 10 bitr2i [˙A/x]˙zBzy|[˙A/x]˙yB
12 11 bibi1i [˙A/x]˙zBzCzy|[˙A/x]˙yBzC
13 12 biimpi [˙A/x]˙zBzCzy|[˙A/x]˙yBzC
14 6 13 sylg φzzy|[˙A/x]˙yBzC
15 dfcleq y|[˙A/x]˙yB=Czzy|[˙A/x]˙yBzC
16 14 15 sylibr φy|[˙A/x]˙yB=C
17 3 16 eqtrid φA/xB=C