Metamath Proof Explorer


Theorem curf1fval

Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses curfval.g G = C D curry F F
curfval.a A = Base C
curfval.c φ C Cat
curfval.d φ D Cat
curfval.f φ F C × c D Func E
curfval.b B = Base D
curfval.j J = Hom D
curfval.1 1 ˙ = Id C
Assertion curf1fval φ 1 st G = x A y B x 1 st F y y B , z B g y J z 1 ˙ x x y 2 nd F x z g

Proof

Step Hyp Ref Expression
1 curfval.g G = C D curry F F
2 curfval.a A = Base C
3 curfval.c φ C Cat
4 curfval.d φ D Cat
5 curfval.f φ F C × c D Func E
6 curfval.b B = Base D
7 curfval.j J = Hom D
8 curfval.1 1 ˙ = Id C
9 eqid Hom C = Hom C
10 eqid Id D = Id D
11 1 2 3 4 5 6 7 8 9 10 curfval φ G = x A y B x 1 st F y y B , z B g y J z 1 ˙ x x y 2 nd F x z g x A , y A g x Hom C y z B g x z 2 nd F y z Id D z
12 2 fvexi A V
13 12 mptex x A y B x 1 st F y y B , z B g y J z 1 ˙ x x y 2 nd F x z g V
14 12 12 mpoex x A , y A g x Hom C y z B g x z 2 nd F y z Id D z V
15 13 14 op1std G = x A y B x 1 st F y y B , z B g y J z 1 ˙ x x y 2 nd F x z g x A , y A g x Hom C y z B g x z 2 nd F y z Id D z 1 st G = x A y B x 1 st F y y B , z B g y J z 1 ˙ x x y 2 nd F x z g
16 11 15 syl φ 1 st G = x A y B x 1 st F y y B , z B g y J z 1 ˙ x x y 2 nd F x z g