Metamath Proof Explorer


Definition df-func

Description: Function returning all the functors from a category t to a category u . Definition 3.17 of Adamek p. 29, and definition in Lang p. 62 ("covariant functor"). Intuitively a functor associates any morphism of t to a morphism of u , any object of t to an object of u , and respects the identity, the composition, the domain and the codomain. Here to capture the idea that a functor associates any object of t to an object of u we write it associates any identity of t to an identity of u which simplifies the definition. According to remark 3.19 in Adamek p. 30, "a functor F : A -> B is technically a family of functions; one from Ob(A) to Ob(B) [here: f, called "the object part" in the following], and for each pair (A,A') of A-objects, one from hom(A,A') to hom(FA, FA') [here: g, called "the morphism part" in the following]". (Contributed by FL, 10-Feb-2008) (Revised by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-func Func=tCat,uCatfg|[˙Baset/b]˙f:bBaseugzb×bf1stzHomuf2ndzHomtzxbxgxIdtx=IdufxybzbmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfunc classFunc
1 vt setvart
2 ccat classCat
3 vu setvaru
4 vf setvarf
5 vg setvarg
6 cbs classBase
7 1 cv setvart
8 7 6 cfv classBaset
9 vb setvarb
10 4 cv setvarf
11 9 cv setvarb
12 3 cv setvaru
13 12 6 cfv classBaseu
14 11 13 10 wf wfff:bBaseu
15 5 cv setvarg
16 vz setvarz
17 11 11 cxp classb×b
18 c1st class1st
19 16 cv setvarz
20 19 18 cfv class1stz
21 20 10 cfv classf1stz
22 chom classHom
23 12 22 cfv classHomu
24 c2nd class2nd
25 19 24 cfv class2ndz
26 25 10 cfv classf2ndz
27 21 26 23 co classf1stzHomuf2ndz
28 cmap class𝑚
29 7 22 cfv classHomt
30 19 29 cfv classHomtz
31 27 30 28 co classf1stzHomuf2ndzHomtz
32 16 17 31 cixp classzb×bf1stzHomuf2ndzHomtz
33 15 32 wcel wffgzb×bf1stzHomuf2ndzHomtz
34 vx setvarx
35 34 cv setvarx
36 35 35 15 co classxgx
37 ccid classId
38 7 37 cfv classIdt
39 35 38 cfv classIdtx
40 39 36 cfv classxgxIdtx
41 12 37 cfv classIdu
42 35 10 cfv classfx
43 42 41 cfv classIdufx
44 40 43 wceq wffxgxIdtx=Idufx
45 vy setvary
46 vm setvarm
47 45 cv setvary
48 35 47 29 co classxHomty
49 vn setvarn
50 47 19 29 co classyHomtz
51 35 19 15 co classxgz
52 49 cv setvarn
53 35 47 cop classxy
54 cco classcomp
55 7 54 cfv classcompt
56 53 19 55 co classxycomptz
57 46 cv setvarm
58 52 57 56 co classnxycomptzm
59 58 51 cfv classxgznxycomptzm
60 47 19 15 co classygz
61 52 60 cfv classygzn
62 47 10 cfv classfy
63 42 62 cop classfxfy
64 12 54 cfv classcompu
65 19 10 cfv classfz
66 63 65 64 co classfxfycompufz
67 35 47 15 co classxgy
68 57 67 cfv classxgym
69 61 68 66 co classygznfxfycompufzxgym
70 59 69 wceq wffxgznxycomptzm=ygznfxfycompufzxgym
71 70 49 50 wral wffnyHomtzxgznxycomptzm=ygznfxfycompufzxgym
72 71 46 48 wral wffmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym
73 72 16 11 wral wffzbmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym
74 73 45 11 wral wffybzbmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym
75 44 74 wa wffxgxIdtx=IdufxybzbmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym
76 75 34 11 wral wffxbxgxIdtx=IdufxybzbmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym
77 14 33 76 w3a wfff:bBaseugzb×bf1stzHomuf2ndzHomtzxbxgxIdtx=IdufxybzbmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym
78 77 9 8 wsbc wff[˙Baset/b]˙f:bBaseugzb×bf1stzHomuf2ndzHomtzxbxgxIdtx=IdufxybzbmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym
79 78 4 5 copab classfg|[˙Baset/b]˙f:bBaseugzb×bf1stzHomuf2ndzHomtzxbxgxIdtx=IdufxybzbmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym
80 1 3 2 2 79 cmpo classtCat,uCatfg|[˙Baset/b]˙f:bBaseugzb×bf1stzHomuf2ndzHomtzxbxgxIdtx=IdufxybzbmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym
81 0 80 wceq wffFunc=tCat,uCatfg|[˙Baset/b]˙f:bBaseugzb×bf1stzHomuf2ndzHomtzxbxgxIdtx=IdufxybzbmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym