Metamath Proof Explorer


Definition df-idfu

Description: Define the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Assertion df-idfu idfunc=tCatBaset/bIbzb×bIHomtz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cidfu classidfunc
1 vt setvart
2 ccat classCat
3 cbs classBase
4 1 cv setvart
5 4 3 cfv classBaset
6 vb setvarb
7 cid classI
8 6 cv setvarb
9 7 8 cres classIb
10 vz setvarz
11 8 8 cxp classb×b
12 chom classHom
13 4 12 cfv classHomt
14 10 cv setvarz
15 14 13 cfv classHomtz
16 7 15 cres classIHomtz
17 10 11 16 cmpt classzb×bIHomtz
18 9 17 cop classIbzb×bIHomtz
19 6 5 18 csb classBaset/bIbzb×bIHomtz
20 1 2 19 cmpt classtCatBaset/bIbzb×bIHomtz
21 0 20 wceq wffidfunc=tCatBaset/bIbzb×bIHomtz