Step |
Hyp |
Ref |
Expression |
1 |
|
uncfval.g |
|- F = ( <" C D E "> uncurryF G ) |
2 |
|
uncfval.c |
|- ( ph -> D e. Cat ) |
3 |
|
uncfval.d |
|- ( ph -> E e. Cat ) |
4 |
|
uncfval.f |
|- ( ph -> G e. ( C Func ( D FuncCat E ) ) ) |
5 |
|
df-uncf |
|- uncurryF = ( c e. _V , f e. _V |-> ( ( ( c ` 1 ) evalF ( c ` 2 ) ) o.func ( ( f o.func ( ( c ` 0 ) 1stF ( c ` 1 ) ) ) pairF ( ( c ` 0 ) 2ndF ( c ` 1 ) ) ) ) ) |
6 |
5
|
a1i |
|- ( ph -> uncurryF = ( c e. _V , f e. _V |-> ( ( ( c ` 1 ) evalF ( c ` 2 ) ) o.func ( ( f o.func ( ( c ` 0 ) 1stF ( c ` 1 ) ) ) pairF ( ( c ` 0 ) 2ndF ( c ` 1 ) ) ) ) ) ) |
7 |
|
simprl |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> c = <" C D E "> ) |
8 |
7
|
fveq1d |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( c ` 1 ) = ( <" C D E "> ` 1 ) ) |
9 |
|
s3fv1 |
|- ( D e. Cat -> ( <" C D E "> ` 1 ) = D ) |
10 |
2 9
|
syl |
|- ( ph -> ( <" C D E "> ` 1 ) = D ) |
11 |
10
|
adantr |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( <" C D E "> ` 1 ) = D ) |
12 |
8 11
|
eqtrd |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( c ` 1 ) = D ) |
13 |
7
|
fveq1d |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( c ` 2 ) = ( <" C D E "> ` 2 ) ) |
14 |
|
s3fv2 |
|- ( E e. Cat -> ( <" C D E "> ` 2 ) = E ) |
15 |
3 14
|
syl |
|- ( ph -> ( <" C D E "> ` 2 ) = E ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( <" C D E "> ` 2 ) = E ) |
17 |
13 16
|
eqtrd |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( c ` 2 ) = E ) |
18 |
12 17
|
oveq12d |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( ( c ` 1 ) evalF ( c ` 2 ) ) = ( D evalF E ) ) |
19 |
|
simprr |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> f = G ) |
20 |
7
|
fveq1d |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( c ` 0 ) = ( <" C D E "> ` 0 ) ) |
21 |
|
funcrcl |
|- ( G e. ( C Func ( D FuncCat E ) ) -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
22 |
4 21
|
syl |
|- ( ph -> ( C e. Cat /\ ( D FuncCat E ) e. Cat ) ) |
23 |
22
|
simpld |
|- ( ph -> C e. Cat ) |
24 |
|
s3fv0 |
|- ( C e. Cat -> ( <" C D E "> ` 0 ) = C ) |
25 |
23 24
|
syl |
|- ( ph -> ( <" C D E "> ` 0 ) = C ) |
26 |
25
|
adantr |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( <" C D E "> ` 0 ) = C ) |
27 |
20 26
|
eqtrd |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( c ` 0 ) = C ) |
28 |
27 12
|
oveq12d |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( ( c ` 0 ) 1stF ( c ` 1 ) ) = ( C 1stF D ) ) |
29 |
19 28
|
oveq12d |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( f o.func ( ( c ` 0 ) 1stF ( c ` 1 ) ) ) = ( G o.func ( C 1stF D ) ) ) |
30 |
27 12
|
oveq12d |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( ( c ` 0 ) 2ndF ( c ` 1 ) ) = ( C 2ndF D ) ) |
31 |
29 30
|
oveq12d |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( ( f o.func ( ( c ` 0 ) 1stF ( c ` 1 ) ) ) pairF ( ( c ` 0 ) 2ndF ( c ` 1 ) ) ) = ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) |
32 |
18 31
|
oveq12d |
|- ( ( ph /\ ( c = <" C D E "> /\ f = G ) ) -> ( ( ( c ` 1 ) evalF ( c ` 2 ) ) o.func ( ( f o.func ( ( c ` 0 ) 1stF ( c ` 1 ) ) ) pairF ( ( c ` 0 ) 2ndF ( c ` 1 ) ) ) ) = ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) |
33 |
|
s3cli |
|- <" C D E "> e. Word _V |
34 |
|
elex |
|- ( <" C D E "> e. Word _V -> <" C D E "> e. _V ) |
35 |
33 34
|
mp1i |
|- ( ph -> <" C D E "> e. _V ) |
36 |
4
|
elexd |
|- ( ph -> G e. _V ) |
37 |
|
ovexd |
|- ( ph -> ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) e. _V ) |
38 |
6 32 35 36 37
|
ovmpod |
|- ( ph -> ( <" C D E "> uncurryF G ) = ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) |
39 |
1 38
|
eqtrid |
|- ( ph -> F = ( ( D evalF E ) o.func ( ( G o.func ( C 1stF D ) ) pairF ( C 2ndF D ) ) ) ) |