Step |
Hyp |
Ref |
Expression |
1 |
|
uncfval.g |
⊢ 𝐹 = ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) |
2 |
|
uncfval.c |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
3 |
|
uncfval.d |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
4 |
|
uncfval.f |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) |
5 |
|
df-uncf |
⊢ uncurryF = ( 𝑐 ∈ V , 𝑓 ∈ V ↦ ( ( ( 𝑐 ‘ 1 ) evalF ( 𝑐 ‘ 2 ) ) ∘func ( ( 𝑓 ∘func ( ( 𝑐 ‘ 0 ) 1stF ( 𝑐 ‘ 1 ) ) ) 〈,〉F ( ( 𝑐 ‘ 0 ) 2ndF ( 𝑐 ‘ 1 ) ) ) ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → uncurryF = ( 𝑐 ∈ V , 𝑓 ∈ V ↦ ( ( ( 𝑐 ‘ 1 ) evalF ( 𝑐 ‘ 2 ) ) ∘func ( ( 𝑓 ∘func ( ( 𝑐 ‘ 0 ) 1stF ( 𝑐 ‘ 1 ) ) ) 〈,〉F ( ( 𝑐 ‘ 0 ) 2ndF ( 𝑐 ‘ 1 ) ) ) ) ) ) |
7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ) |
8 |
7
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( 𝑐 ‘ 1 ) = ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 1 ) ) |
9 |
|
s3fv1 |
⊢ ( 𝐷 ∈ Cat → ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 1 ) = 𝐷 ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 1 ) = 𝐷 ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 1 ) = 𝐷 ) |
12 |
8 11
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( 𝑐 ‘ 1 ) = 𝐷 ) |
13 |
7
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( 𝑐 ‘ 2 ) = ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 2 ) ) |
14 |
|
s3fv2 |
⊢ ( 𝐸 ∈ Cat → ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 2 ) = 𝐸 ) |
15 |
3 14
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 2 ) = 𝐸 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 2 ) = 𝐸 ) |
17 |
13 16
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( 𝑐 ‘ 2 ) = 𝐸 ) |
18 |
12 17
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( ( 𝑐 ‘ 1 ) evalF ( 𝑐 ‘ 2 ) ) = ( 𝐷 evalF 𝐸 ) ) |
19 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → 𝑓 = 𝐺 ) |
20 |
7
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( 𝑐 ‘ 0 ) = ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 0 ) ) |
21 |
|
funcrcl |
⊢ ( 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) → ( 𝐶 ∈ Cat ∧ ( 𝐷 FuncCat 𝐸 ) ∈ Cat ) ) |
22 |
4 21
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( 𝐷 FuncCat 𝐸 ) ∈ Cat ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
24 |
|
s3fv0 |
⊢ ( 𝐶 ∈ Cat → ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 0 ) = 𝐶 ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 0 ) = 𝐶 ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( 〈“ 𝐶 𝐷 𝐸 ”〉 ‘ 0 ) = 𝐶 ) |
27 |
20 26
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( 𝑐 ‘ 0 ) = 𝐶 ) |
28 |
27 12
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( ( 𝑐 ‘ 0 ) 1stF ( 𝑐 ‘ 1 ) ) = ( 𝐶 1stF 𝐷 ) ) |
29 |
19 28
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( 𝑓 ∘func ( ( 𝑐 ‘ 0 ) 1stF ( 𝑐 ‘ 1 ) ) ) = ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) |
30 |
27 12
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( ( 𝑐 ‘ 0 ) 2ndF ( 𝑐 ‘ 1 ) ) = ( 𝐶 2ndF 𝐷 ) ) |
31 |
29 30
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( ( 𝑓 ∘func ( ( 𝑐 ‘ 0 ) 1stF ( 𝑐 ‘ 1 ) ) ) 〈,〉F ( ( 𝑐 ‘ 0 ) 2ndF ( 𝑐 ‘ 1 ) ) ) = ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) |
32 |
18 31
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 〈“ 𝐶 𝐷 𝐸 ”〉 ∧ 𝑓 = 𝐺 ) ) → ( ( ( 𝑐 ‘ 1 ) evalF ( 𝑐 ‘ 2 ) ) ∘func ( ( 𝑓 ∘func ( ( 𝑐 ‘ 0 ) 1stF ( 𝑐 ‘ 1 ) ) ) 〈,〉F ( ( 𝑐 ‘ 0 ) 2ndF ( 𝑐 ‘ 1 ) ) ) ) = ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) |
33 |
|
s3cli |
⊢ 〈“ 𝐶 𝐷 𝐸 ”〉 ∈ Word V |
34 |
|
elex |
⊢ ( 〈“ 𝐶 𝐷 𝐸 ”〉 ∈ Word V → 〈“ 𝐶 𝐷 𝐸 ”〉 ∈ V ) |
35 |
33 34
|
mp1i |
⊢ ( 𝜑 → 〈“ 𝐶 𝐷 𝐸 ”〉 ∈ V ) |
36 |
4
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
37 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ∈ V ) |
38 |
6 32 35 36 37
|
ovmpod |
⊢ ( 𝜑 → ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) = ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) |
39 |
1 38
|
eqtrid |
⊢ ( 𝜑 → 𝐹 = ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) |