| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uncfval.g | ⊢ 𝐹  =  ( 〈“ 𝐶 𝐷 𝐸 ”〉  uncurryF  𝐺 ) | 
						
							| 2 |  | uncfval.c | ⊢ ( 𝜑  →  𝐷  ∈  Cat ) | 
						
							| 3 |  | uncfval.d | ⊢ ( 𝜑  →  𝐸  ∈  Cat ) | 
						
							| 4 |  | uncfval.f | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐶  Func  ( 𝐷  FuncCat  𝐸 ) ) ) | 
						
							| 5 | 1 2 3 4 | uncfval | ⊢ ( 𝜑  →  𝐹  =  ( ( 𝐷  evalF  𝐸 )  ∘func  ( ( 𝐺  ∘func  ( 𝐶  1stF  𝐷 ) )  〈,〉F  ( 𝐶  2ndF  𝐷 ) ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( ( 𝐺  ∘func  ( 𝐶  1stF  𝐷 ) )  〈,〉F  ( 𝐶  2ndF  𝐷 ) )  =  ( ( 𝐺  ∘func  ( 𝐶  1stF  𝐷 ) )  〈,〉F  ( 𝐶  2ndF  𝐷 ) ) | 
						
							| 7 |  | eqid | ⊢ ( ( 𝐷  FuncCat  𝐸 )  ×c  𝐷 )  =  ( ( 𝐷  FuncCat  𝐸 )  ×c  𝐷 ) | 
						
							| 8 |  | eqid | ⊢ ( 𝐶  ×c  𝐷 )  =  ( 𝐶  ×c  𝐷 ) | 
						
							| 9 |  | funcrcl | ⊢ ( 𝐺  ∈  ( 𝐶  Func  ( 𝐷  FuncCat  𝐸 ) )  →  ( 𝐶  ∈  Cat  ∧  ( 𝐷  FuncCat  𝐸 )  ∈  Cat ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  ( 𝐶  ∈  Cat  ∧  ( 𝐷  FuncCat  𝐸 )  ∈  Cat ) ) | 
						
							| 11 | 10 | simpld | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 12 |  | eqid | ⊢ ( 𝐶  1stF  𝐷 )  =  ( 𝐶  1stF  𝐷 ) | 
						
							| 13 | 8 11 2 12 | 1stfcl | ⊢ ( 𝜑  →  ( 𝐶  1stF  𝐷 )  ∈  ( ( 𝐶  ×c  𝐷 )  Func  𝐶 ) ) | 
						
							| 14 | 13 4 | cofucl | ⊢ ( 𝜑  →  ( 𝐺  ∘func  ( 𝐶  1stF  𝐷 ) )  ∈  ( ( 𝐶  ×c  𝐷 )  Func  ( 𝐷  FuncCat  𝐸 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( 𝐶  2ndF  𝐷 )  =  ( 𝐶  2ndF  𝐷 ) | 
						
							| 16 | 8 11 2 15 | 2ndfcl | ⊢ ( 𝜑  →  ( 𝐶  2ndF  𝐷 )  ∈  ( ( 𝐶  ×c  𝐷 )  Func  𝐷 ) ) | 
						
							| 17 | 6 7 14 16 | prfcl | ⊢ ( 𝜑  →  ( ( 𝐺  ∘func  ( 𝐶  1stF  𝐷 ) )  〈,〉F  ( 𝐶  2ndF  𝐷 ) )  ∈  ( ( 𝐶  ×c  𝐷 )  Func  ( ( 𝐷  FuncCat  𝐸 )  ×c  𝐷 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( 𝐷  evalF  𝐸 )  =  ( 𝐷  evalF  𝐸 ) | 
						
							| 19 |  | eqid | ⊢ ( 𝐷  FuncCat  𝐸 )  =  ( 𝐷  FuncCat  𝐸 ) | 
						
							| 20 | 18 19 2 3 | evlfcl | ⊢ ( 𝜑  →  ( 𝐷  evalF  𝐸 )  ∈  ( ( ( 𝐷  FuncCat  𝐸 )  ×c  𝐷 )  Func  𝐸 ) ) | 
						
							| 21 | 17 20 | cofucl | ⊢ ( 𝜑  →  ( ( 𝐷  evalF  𝐸 )  ∘func  ( ( 𝐺  ∘func  ( 𝐶  1stF  𝐷 ) )  〈,〉F  ( 𝐶  2ndF  𝐷 ) ) )  ∈  ( ( 𝐶  ×c  𝐷 )  Func  𝐸 ) ) | 
						
							| 22 | 5 21 | eqeltrd | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐶  ×c  𝐷 )  Func  𝐸 ) ) |