Metamath Proof Explorer


Theorem uncfcl

Description: The uncurry operation takes a functor F : C --> ( D --> E ) to a functor uncurryF ( F ) : C X. D --> E . (Contributed by Mario Carneiro, 13-Jan-2017)

Ref Expression
Hypotheses uncfval.g F = ⟨“ CDE ”⟩ uncurry F G
uncfval.c φ D Cat
uncfval.d φ E Cat
uncfval.f φ G C Func D FuncCat E
Assertion uncfcl φ F C × c D Func E

Proof

Step Hyp Ref Expression
1 uncfval.g F = ⟨“ CDE ”⟩ uncurry F G
2 uncfval.c φ D Cat
3 uncfval.d φ E Cat
4 uncfval.f φ G C Func D FuncCat E
5 1 2 3 4 uncfval φ F = D eval F E func G func C 1 st F D ⟨,⟩ F C 2 nd F D
6 eqid G func C 1 st F D ⟨,⟩ F C 2 nd F D = G func C 1 st F D ⟨,⟩ F C 2 nd F D
7 eqid D FuncCat E × c D = D FuncCat E × c D
8 eqid C × c D = C × c D
9 funcrcl G C Func D FuncCat E C Cat D FuncCat E Cat
10 4 9 syl φ C Cat D FuncCat E Cat
11 10 simpld φ C Cat
12 eqid C 1 st F D = C 1 st F D
13 8 11 2 12 1stfcl φ C 1 st F D C × c D Func C
14 13 4 cofucl φ G func C 1 st F D C × c D Func D FuncCat E
15 eqid C 2 nd F D = C 2 nd F D
16 8 11 2 15 2ndfcl φ C 2 nd F D C × c D Func D
17 6 7 14 16 prfcl φ G func C 1 st F D ⟨,⟩ F C 2 nd F D C × c D Func D FuncCat E × c D
18 eqid D eval F E = D eval F E
19 eqid D FuncCat E = D FuncCat E
20 18 19 2 3 evlfcl φ D eval F E D FuncCat E × c D Func E
21 17 20 cofucl φ D eval F E func G func C 1 st F D ⟨,⟩ F C 2 nd F D C × c D Func E
22 5 21 eqeltrd φ F C × c D Func E