Metamath Proof Explorer


Theorem evlfcl

Description: The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors C --> D , and the second parameter in D . (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfcl.e E = C eval F D
evlfcl.q Q = C FuncCat D
evlfcl.c φ C Cat
evlfcl.d φ D Cat
Assertion evlfcl φ E Q × c C Func D

Proof

Step Hyp Ref Expression
1 evlfcl.e E = C eval F D
2 evlfcl.q Q = C FuncCat D
3 evlfcl.c φ C Cat
4 evlfcl.d φ D Cat
5 eqid Base C = Base C
6 eqid Hom C = Hom C
7 eqid comp D = comp D
8 eqid C Nat D = C Nat D
9 1 3 4 5 6 7 8 evlfval φ E = f C Func D , x Base C 1 st f x x C Func D × Base C , y C Func D × Base C 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
10 ovex C Func D V
11 fvex Base C V
12 10 11 mpoex f C Func D , x Base C 1 st f x V
13 10 11 xpex C Func D × Base C V
14 13 13 mpoex x C Func D × Base C , y C Func D × Base C 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g V
15 12 14 opelvv f C Func D , x Base C 1 st f x x C Func D × Base C , y C Func D × Base C 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g V × V
16 9 15 eqeltrdi φ E V × V
17 1st2nd2 E V × V E = 1 st E 2 nd E
18 16 17 syl φ E = 1 st E 2 nd E
19 eqid Q × c C = Q × c C
20 2 fucbas C Func D = Base Q
21 19 20 5 xpcbas C Func D × Base C = Base Q × c C
22 eqid Base D = Base D
23 eqid Hom Q × c C = Hom Q × c C
24 eqid Hom D = Hom D
25 eqid Id Q × c C = Id Q × c C
26 eqid Id D = Id D
27 eqid comp Q × c C = comp Q × c C
28 2 3 4 fuccat φ Q Cat
29 19 28 3 xpccat φ Q × c C Cat
30 relfunc Rel C Func D
31 simpr φ f C Func D f C Func D
32 1st2ndbr Rel C Func D f C Func D 1 st f C Func D 2 nd f
33 30 31 32 sylancr φ f C Func D 1 st f C Func D 2 nd f
34 5 22 33 funcf1 φ f C Func D 1 st f : Base C Base D
35 34 ffvelrnda φ f C Func D x Base C 1 st f x Base D
36 35 ralrimiva φ f C Func D x Base C 1 st f x Base D
37 36 ralrimiva φ f C Func D x Base C 1 st f x Base D
38 eqid f C Func D , x Base C 1 st f x = f C Func D , x Base C 1 st f x
39 38 fmpo f C Func D x Base C 1 st f x Base D f C Func D , x Base C 1 st f x : C Func D × Base C Base D
40 37 39 sylib φ f C Func D , x Base C 1 st f x : C Func D × Base C Base D
41 12 14 op1std E = f C Func D , x Base C 1 st f x x C Func D × Base C , y C Func D × Base C 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g 1 st E = f C Func D , x Base C 1 st f x
42 9 41 syl φ 1 st E = f C Func D , x Base C 1 st f x
43 42 feq1d φ 1 st E : C Func D × Base C Base D f C Func D , x Base C 1 st f x : C Func D × Base C Base D
44 40 43 mpbird φ 1 st E : C Func D × Base C Base D
45 eqid x C Func D × Base C , y C Func D × Base C 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g = x C Func D × Base C , y C Func D × Base C 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
46 ovex m C Nat D n V
47 ovex 2 nd x Hom C 2 nd y V
48 46 47 mpoex a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g V
49 48 csbex 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g V
50 49 csbex 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g V
51 45 50 fnmpoi x C Func D × Base C , y C Func D × Base C 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g Fn C Func D × Base C × C Func D × Base C
52 12 14 op2ndd E = f C Func D , x Base C 1 st f x x C Func D × Base C , y C Func D × Base C 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g 2 nd E = x C Func D × Base C , y C Func D × Base C 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
53 9 52 syl φ 2 nd E = x C Func D × Base C , y C Func D × Base C 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
54 53 fneq1d φ 2 nd E Fn C Func D × Base C × C Func D × Base C x C Func D × Base C , y C Func D × Base C 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g Fn C Func D × Base C × C Func D × Base C
55 51 54 mpbiri φ 2 nd E Fn C Func D × Base C × C Func D × Base C
56 4 ad2antrr φ f C Func D u Base C g C Func D v Base C D Cat
57 56 adantr φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v D Cat
58 simplrl φ f C Func D u Base C g C Func D v Base C f C Func D
59 30 58 32 sylancr φ f C Func D u Base C g C Func D v Base C 1 st f C Func D 2 nd f
60 5 22 59 funcf1 φ f C Func D u Base C g C Func D v Base C 1 st f : Base C Base D
61 60 adantr φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v 1 st f : Base C Base D
62 simplrr φ f C Func D u Base C g C Func D v Base C u Base C
63 62 adantr φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v u Base C
64 61 63 ffvelrnd φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v 1 st f u Base D
65 simplrr φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v v Base C
66 61 65 ffvelrnd φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v 1 st f v Base D
67 simprl φ f C Func D u Base C g C Func D v Base C g C Func D
68 1st2ndbr Rel C Func D g C Func D 1 st g C Func D 2 nd g
69 30 67 68 sylancr φ f C Func D u Base C g C Func D v Base C 1 st g C Func D 2 nd g
70 5 22 69 funcf1 φ f C Func D u Base C g C Func D v Base C 1 st g : Base C Base D
71 70 adantr φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v 1 st g : Base C Base D
72 71 65 ffvelrnd φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v 1 st g v Base D
73 simprr φ f C Func D u Base C g C Func D v Base C v Base C
74 5 6 24 59 62 73 funcf2 φ f C Func D u Base C g C Func D v Base C u 2 nd f v : u Hom C v 1 st f u Hom D 1 st f v
75 74 adantr φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v u 2 nd f v : u Hom C v 1 st f u Hom D 1 st f v
76 simprr φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v h u Hom C v
77 75 76 ffvelrnd φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v u 2 nd f v h 1 st f u Hom D 1 st f v
78 simprl φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v a f C Nat D g
79 8 78 nat1st2nd φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v a 1 st f 2 nd f C Nat D 1 st g 2 nd g
80 8 79 5 24 65 natcl φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v a v 1 st f v Hom D 1 st g v
81 22 24 7 57 64 66 72 77 80 catcocl φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v a v 1 st f u 1 st f v comp D 1 st g v u 2 nd f v h 1 st f u Hom D 1 st g v
82 81 ralrimivva φ f C Func D u Base C g C Func D v Base C a f C Nat D g h u Hom C v a v 1 st f u 1 st f v comp D 1 st g v u 2 nd f v h 1 st f u Hom D 1 st g v
83 eqid a f C Nat D g , h u Hom C v a v 1 st f u 1 st f v comp D 1 st g v u 2 nd f v h = a f C Nat D g , h u Hom C v a v 1 st f u 1 st f v comp D 1 st g v u 2 nd f v h
84 83 fmpo a f C Nat D g h u Hom C v a v 1 st f u 1 st f v comp D 1 st g v u 2 nd f v h 1 st f u Hom D 1 st g v a f C Nat D g , h u Hom C v a v 1 st f u 1 st f v comp D 1 st g v u 2 nd f v h : f C Nat D g × u Hom C v 1 st f u Hom D 1 st g v
85 82 84 sylib φ f C Func D u Base C g C Func D v Base C a f C Nat D g , h u Hom C v a v 1 st f u 1 st f v comp D 1 st g v u 2 nd f v h : f C Nat D g × u Hom C v 1 st f u Hom D 1 st g v
86 3 ad2antrr φ f C Func D u Base C g C Func D v Base C C Cat
87 eqid f u 2 nd E g v = f u 2 nd E g v
88 1 86 56 5 6 7 8 58 67 62 73 87 evlf2 φ f C Func D u Base C g C Func D v Base C f u 2 nd E g v = a f C Nat D g , h u Hom C v a v 1 st f u 1 st f v comp D 1 st g v u 2 nd f v h
89 88 feq1d φ f C Func D u Base C g C Func D v Base C f u 2 nd E g v : f C Nat D g × u Hom C v 1 st f u Hom D 1 st g v a f C Nat D g , h u Hom C v a v 1 st f u 1 st f v comp D 1 st g v u 2 nd f v h : f C Nat D g × u Hom C v 1 st f u Hom D 1 st g v
90 85 89 mpbird φ f C Func D u Base C g C Func D v Base C f u 2 nd E g v : f C Nat D g × u Hom C v 1 st f u Hom D 1 st g v
91 2 8 fuchom C Nat D = Hom Q
92 19 20 5 91 6 58 62 67 73 23 xpchom2 φ f C Func D u Base C g C Func D v Base C f u Hom Q × c C g v = f C Nat D g × u Hom C v
93 1 86 56 5 58 62 evlf1 φ f C Func D u Base C g C Func D v Base C f 1 st E u = 1 st f u
94 1 86 56 5 67 73 evlf1 φ f C Func D u Base C g C Func D v Base C g 1 st E v = 1 st g v
95 93 94 oveq12d φ f C Func D u Base C g C Func D v Base C f 1 st E u Hom D g 1 st E v = 1 st f u Hom D 1 st g v
96 92 95 feq23d φ f C Func D u Base C g C Func D v Base C f u 2 nd E g v : f u Hom Q × c C g v f 1 st E u Hom D g 1 st E v f u 2 nd E g v : f C Nat D g × u Hom C v 1 st f u Hom D 1 st g v
97 90 96 mpbird φ f C Func D u Base C g C Func D v Base C f u 2 nd E g v : f u Hom Q × c C g v f 1 st E u Hom D g 1 st E v
98 97 ralrimivva φ f C Func D u Base C g C Func D v Base C f u 2 nd E g v : f u Hom Q × c C g v f 1 st E u Hom D g 1 st E v
99 98 ralrimivva φ f C Func D u Base C g C Func D v Base C f u 2 nd E g v : f u Hom Q × c C g v f 1 st E u Hom D g 1 st E v
100 oveq2 y = g v x 2 nd E y = x 2 nd E g v
101 oveq2 y = g v x Hom Q × c C y = x Hom Q × c C g v
102 fveq2 y = g v 1 st E y = 1 st E g v
103 df-ov g 1 st E v = 1 st E g v
104 102 103 eqtr4di y = g v 1 st E y = g 1 st E v
105 104 oveq2d y = g v 1 st E x Hom D 1 st E y = 1 st E x Hom D g 1 st E v
106 100 101 105 feq123d y = g v x 2 nd E y : x Hom Q × c C y 1 st E x Hom D 1 st E y x 2 nd E g v : x Hom Q × c C g v 1 st E x Hom D g 1 st E v
107 106 ralxp y C Func D × Base C x 2 nd E y : x Hom Q × c C y 1 st E x Hom D 1 st E y g C Func D v Base C x 2 nd E g v : x Hom Q × c C g v 1 st E x Hom D g 1 st E v
108 oveq1 x = f u x 2 nd E g v = f u 2 nd E g v
109 oveq1 x = f u x Hom Q × c C g v = f u Hom Q × c C g v
110 fveq2 x = f u 1 st E x = 1 st E f u
111 df-ov f 1 st E u = 1 st E f u
112 110 111 eqtr4di x = f u 1 st E x = f 1 st E u
113 112 oveq1d x = f u 1 st E x Hom D g 1 st E v = f 1 st E u Hom D g 1 st E v
114 108 109 113 feq123d x = f u x 2 nd E g v : x Hom Q × c C g v 1 st E x Hom D g 1 st E v f u 2 nd E g v : f u Hom Q × c C g v f 1 st E u Hom D g 1 st E v
115 114 2ralbidv x = f u g C Func D v Base C x 2 nd E g v : x Hom Q × c C g v 1 st E x Hom D g 1 st E v g C Func D v Base C f u 2 nd E g v : f u Hom Q × c C g v f 1 st E u Hom D g 1 st E v
116 107 115 syl5bb x = f u y C Func D × Base C x 2 nd E y : x Hom Q × c C y 1 st E x Hom D 1 st E y g C Func D v Base C f u 2 nd E g v : f u Hom Q × c C g v f 1 st E u Hom D g 1 st E v
117 116 ralxp x C Func D × Base C y C Func D × Base C x 2 nd E y : x Hom Q × c C y 1 st E x Hom D 1 st E y f C Func D u Base C g C Func D v Base C f u 2 nd E g v : f u Hom Q × c C g v f 1 st E u Hom D g 1 st E v
118 99 117 sylibr φ x C Func D × Base C y C Func D × Base C x 2 nd E y : x Hom Q × c C y 1 st E x Hom D 1 st E y
119 118 r19.21bi φ x C Func D × Base C y C Func D × Base C x 2 nd E y : x Hom Q × c C y 1 st E x Hom D 1 st E y
120 119 r19.21bi φ x C Func D × Base C y C Func D × Base C x 2 nd E y : x Hom Q × c C y 1 st E x Hom D 1 st E y
121 120 anasss φ x C Func D × Base C y C Func D × Base C x 2 nd E y : x Hom Q × c C y 1 st E x Hom D 1 st E y
122 28 adantr φ f C Func D u Base C Q Cat
123 3 adantr φ f C Func D u Base C C Cat
124 eqid Id Q = Id Q
125 eqid Id C = Id C
126 simprl φ f C Func D u Base C f C Func D
127 simprr φ f C Func D u Base C u Base C
128 19 122 123 20 5 124 125 25 126 127 xpcid φ f C Func D u Base C Id Q × c C f u = Id Q f Id C u
129 128 fveq2d φ f C Func D u Base C f u 2 nd E f u Id Q × c C f u = f u 2 nd E f u Id Q f Id C u
130 df-ov Id Q f f u 2 nd E f u Id C u = f u 2 nd E f u Id Q f Id C u
131 129 130 eqtr4di φ f C Func D u Base C f u 2 nd E f u Id Q × c C f u = Id Q f f u 2 nd E f u Id C u
132 4 adantr φ f C Func D u Base C D Cat
133 eqid f u 2 nd E f u = f u 2 nd E f u
134 20 91 124 122 126 catidcl φ f C Func D u Base C Id Q f f C Nat D f
135 5 6 125 123 127 catidcl φ f C Func D u Base C Id C u u Hom C u
136 1 123 132 5 6 7 8 126 126 127 127 133 134 135 evlf2val φ f C Func D u Base C Id Q f f u 2 nd E f u Id C u = Id Q f u 1 st f u 1 st f u comp D 1 st f u u 2 nd f u Id C u
137 30 126 32 sylancr φ f C Func D u Base C 1 st f C Func D 2 nd f
138 5 22 137 funcf1 φ f C Func D u Base C 1 st f : Base C Base D
139 138 127 ffvelrnd φ f C Func D u Base C 1 st f u Base D
140 22 24 26 132 139 catidcl φ f C Func D u Base C Id D 1 st f u 1 st f u Hom D 1 st f u
141 22 24 26 132 139 7 139 140 catlid φ f C Func D u Base C Id D 1 st f u 1 st f u 1 st f u comp D 1 st f u Id D 1 st f u = Id D 1 st f u
142 2 124 26 126 fucid φ f C Func D u Base C Id Q f = Id D 1 st f
143 142 fveq1d φ f C Func D u Base C Id Q f u = Id D 1 st f u
144 fvco3 1 st f : Base C Base D u Base C Id D 1 st f u = Id D 1 st f u
145 138 127 144 syl2anc φ f C Func D u Base C Id D 1 st f u = Id D 1 st f u
146 143 145 eqtrd φ f C Func D u Base C Id Q f u = Id D 1 st f u
147 5 125 26 137 127 funcid φ f C Func D u Base C u 2 nd f u Id C u = Id D 1 st f u
148 146 147 oveq12d φ f C Func D u Base C Id Q f u 1 st f u 1 st f u comp D 1 st f u u 2 nd f u Id C u = Id D 1 st f u 1 st f u 1 st f u comp D 1 st f u Id D 1 st f u
149 1 123 132 5 126 127 evlf1 φ f C Func D u Base C f 1 st E u = 1 st f u
150 149 fveq2d φ f C Func D u Base C Id D f 1 st E u = Id D 1 st f u
151 141 148 150 3eqtr4d φ f C Func D u Base C Id Q f u 1 st f u 1 st f u comp D 1 st f u u 2 nd f u Id C u = Id D f 1 st E u
152 131 136 151 3eqtrd φ f C Func D u Base C f u 2 nd E f u Id Q × c C f u = Id D f 1 st E u
153 152 ralrimivva φ f C Func D u Base C f u 2 nd E f u Id Q × c C f u = Id D f 1 st E u
154 id x = f u x = f u
155 154 154 oveq12d x = f u x 2 nd E x = f u 2 nd E f u
156 fveq2 x = f u Id Q × c C x = Id Q × c C f u
157 155 156 fveq12d x = f u x 2 nd E x Id Q × c C x = f u 2 nd E f u Id Q × c C f u
158 112 fveq2d x = f u Id D 1 st E x = Id D f 1 st E u
159 157 158 eqeq12d x = f u x 2 nd E x Id Q × c C x = Id D 1 st E x f u 2 nd E f u Id Q × c C f u = Id D f 1 st E u
160 159 ralxp x C Func D × Base C x 2 nd E x Id Q × c C x = Id D 1 st E x f C Func D u Base C f u 2 nd E f u Id Q × c C f u = Id D f 1 st E u
161 153 160 sylibr φ x C Func D × Base C x 2 nd E x Id Q × c C x = Id D 1 st E x
162 161 r19.21bi φ x C Func D × Base C x 2 nd E x Id Q × c C x = Id D 1 st E x
163 3 3ad2ant1 φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z C Cat
164 4 3ad2ant1 φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z D Cat
165 simp21 φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z x C Func D × Base C
166 1st2nd2 x C Func D × Base C x = 1 st x 2 nd x
167 165 166 syl φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z x = 1 st x 2 nd x
168 167 165 eqeltrrd φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st x 2 nd x C Func D × Base C
169 opelxp 1 st x 2 nd x C Func D × Base C 1 st x C Func D 2 nd x Base C
170 168 169 sylib φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st x C Func D 2 nd x Base C
171 simp22 φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z y C Func D × Base C
172 1st2nd2 y C Func D × Base C y = 1 st y 2 nd y
173 171 172 syl φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z y = 1 st y 2 nd y
174 173 171 eqeltrrd φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st y 2 nd y C Func D × Base C
175 opelxp 1 st y 2 nd y C Func D × Base C 1 st y C Func D 2 nd y Base C
176 174 175 sylib φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st y C Func D 2 nd y Base C
177 simp23 φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z z C Func D × Base C
178 1st2nd2 z C Func D × Base C z = 1 st z 2 nd z
179 177 178 syl φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z z = 1 st z 2 nd z
180 179 177 eqeltrrd φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st z 2 nd z C Func D × Base C
181 opelxp 1 st z 2 nd z C Func D × Base C 1 st z C Func D 2 nd z Base C
182 180 181 sylib φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st z C Func D 2 nd z Base C
183 simp3l φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z f x Hom Q × c C y
184 19 21 91 6 23 165 171 xpchom φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z x Hom Q × c C y = 1 st x C Nat D 1 st y × 2 nd x Hom C 2 nd y
185 183 184 eleqtrd φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z f 1 st x C Nat D 1 st y × 2 nd x Hom C 2 nd y
186 1st2nd2 f 1 st x C Nat D 1 st y × 2 nd x Hom C 2 nd y f = 1 st f 2 nd f
187 185 186 syl φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z f = 1 st f 2 nd f
188 187 185 eqeltrrd φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st f 2 nd f 1 st x C Nat D 1 st y × 2 nd x Hom C 2 nd y
189 opelxp 1 st f 2 nd f 1 st x C Nat D 1 st y × 2 nd x Hom C 2 nd y 1 st f 1 st x C Nat D 1 st y 2 nd f 2 nd x Hom C 2 nd y
190 188 189 sylib φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st f 1 st x C Nat D 1 st y 2 nd f 2 nd x Hom C 2 nd y
191 simp3r φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z g y Hom Q × c C z
192 19 21 91 6 23 171 177 xpchom φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z y Hom Q × c C z = 1 st y C Nat D 1 st z × 2 nd y Hom C 2 nd z
193 191 192 eleqtrd φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z g 1 st y C Nat D 1 st z × 2 nd y Hom C 2 nd z
194 1st2nd2 g 1 st y C Nat D 1 st z × 2 nd y Hom C 2 nd z g = 1 st g 2 nd g
195 193 194 syl φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z g = 1 st g 2 nd g
196 195 193 eqeltrrd φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st g 2 nd g 1 st y C Nat D 1 st z × 2 nd y Hom C 2 nd z
197 opelxp 1 st g 2 nd g 1 st y C Nat D 1 st z × 2 nd y Hom C 2 nd z 1 st g 1 st y C Nat D 1 st z 2 nd g 2 nd y Hom C 2 nd z
198 196 197 sylib φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st g 1 st y C Nat D 1 st z 2 nd g 2 nd y Hom C 2 nd z
199 1 2 163 164 8 170 176 182 190 198 evlfcllem φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st x 2 nd x 2 nd E 1 st z 2 nd z 1 st g 2 nd g 1 st x 2 nd x 1 st y 2 nd y comp Q × c C 1 st z 2 nd z 1 st f 2 nd f = 1 st y 2 nd y 2 nd E 1 st z 2 nd z 1 st g 2 nd g 1 st E 1 st x 2 nd x 1 st E 1 st y 2 nd y comp D 1 st E 1 st z 2 nd z 1 st x 2 nd x 2 nd E 1 st y 2 nd y 1 st f 2 nd f
200 167 179 oveq12d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z x 2 nd E z = 1 st x 2 nd x 2 nd E 1 st z 2 nd z
201 167 173 opeq12d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z x y = 1 st x 2 nd x 1 st y 2 nd y
202 201 179 oveq12d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z x y comp Q × c C z = 1 st x 2 nd x 1 st y 2 nd y comp Q × c C 1 st z 2 nd z
203 202 195 187 oveq123d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z g x y comp Q × c C z f = 1 st g 2 nd g 1 st x 2 nd x 1 st y 2 nd y comp Q × c C 1 st z 2 nd z 1 st f 2 nd f
204 200 203 fveq12d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z x 2 nd E z g x y comp Q × c C z f = 1 st x 2 nd x 2 nd E 1 st z 2 nd z 1 st g 2 nd g 1 st x 2 nd x 1 st y 2 nd y comp Q × c C 1 st z 2 nd z 1 st f 2 nd f
205 167 fveq2d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st E x = 1 st E 1 st x 2 nd x
206 173 fveq2d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st E y = 1 st E 1 st y 2 nd y
207 205 206 opeq12d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st E x 1 st E y = 1 st E 1 st x 2 nd x 1 st E 1 st y 2 nd y
208 179 fveq2d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st E z = 1 st E 1 st z 2 nd z
209 207 208 oveq12d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z 1 st E x 1 st E y comp D 1 st E z = 1 st E 1 st x 2 nd x 1 st E 1 st y 2 nd y comp D 1 st E 1 st z 2 nd z
210 173 179 oveq12d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z y 2 nd E z = 1 st y 2 nd y 2 nd E 1 st z 2 nd z
211 210 195 fveq12d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z y 2 nd E z g = 1 st y 2 nd y 2 nd E 1 st z 2 nd z 1 st g 2 nd g
212 167 173 oveq12d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z x 2 nd E y = 1 st x 2 nd x 2 nd E 1 st y 2 nd y
213 212 187 fveq12d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z x 2 nd E y f = 1 st x 2 nd x 2 nd E 1 st y 2 nd y 1 st f 2 nd f
214 209 211 213 oveq123d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z y 2 nd E z g 1 st E x 1 st E y comp D 1 st E z x 2 nd E y f = 1 st y 2 nd y 2 nd E 1 st z 2 nd z 1 st g 2 nd g 1 st E 1 st x 2 nd x 1 st E 1 st y 2 nd y comp D 1 st E 1 st z 2 nd z 1 st x 2 nd x 2 nd E 1 st y 2 nd y 1 st f 2 nd f
215 199 204 214 3eqtr4d φ x C Func D × Base C y C Func D × Base C z C Func D × Base C f x Hom Q × c C y g y Hom Q × c C z x 2 nd E z g x y comp Q × c C z f = y 2 nd E z g 1 st E x 1 st E y comp D 1 st E z x 2 nd E y f
216 21 22 23 24 25 26 27 7 29 4 44 55 121 162 215 isfuncd φ 1 st E Q × c C Func D 2 nd E
217 df-br 1 st E Q × c C Func D 2 nd E 1 st E 2 nd E Q × c C Func D
218 216 217 sylib φ 1 st E 2 nd E Q × c C Func D
219 18 218 eqeltrd φ E Q × c C Func D