Metamath Proof Explorer


Theorem evlfcllem

Description: Lemma for evlfcl . (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfcl.e E = C eval F D
evlfcl.q Q = C FuncCat D
evlfcl.c φ C Cat
evlfcl.d φ D Cat
evlfcl.n N = C Nat D
evlfcl.f φ F C Func D X Base C
evlfcl.g φ G C Func D Y Base C
evlfcl.h φ H C Func D Z Base C
evlfcl.a φ A F N G K X Hom C Y
evlfcl.b φ B G N H L Y Hom C Z
Assertion evlfcllem φ F X 2 nd E H Z B L F X G Y comp Q × c C H Z A K = G Y 2 nd E H Z B L 1 st E F X 1 st E G Y comp D 1 st E H Z F X 2 nd E G Y A K

Proof

Step Hyp Ref Expression
1 evlfcl.e E = C eval F D
2 evlfcl.q Q = C FuncCat D
3 evlfcl.c φ C Cat
4 evlfcl.d φ D Cat
5 evlfcl.n N = C Nat D
6 evlfcl.f φ F C Func D X Base C
7 evlfcl.g φ G C Func D Y Base C
8 evlfcl.h φ H C Func D Z Base C
9 evlfcl.a φ A F N G K X Hom C Y
10 evlfcl.b φ B G N H L Y Hom C Z
11 eqid Base C = Base C
12 eqid Hom C = Hom C
13 eqid comp D = comp D
14 6 simpld φ F C Func D
15 8 simpld φ H C Func D
16 6 simprd φ X Base C
17 8 simprd φ Z Base C
18 eqid F X 2 nd E H Z = F X 2 nd E H Z
19 eqid comp Q = comp Q
20 9 simpld φ A F N G
21 10 simpld φ B G N H
22 2 5 19 20 21 fuccocl φ B F G comp Q H A F N H
23 eqid comp C = comp C
24 7 simprd φ Y Base C
25 9 simprd φ K X Hom C Y
26 10 simprd φ L Y Hom C Z
27 11 12 23 3 16 24 17 25 26 catcocl φ L X Y comp C Z K X Hom C Z
28 1 3 4 11 12 13 5 14 15 16 17 18 22 27 evlf2val φ B F G comp Q H A F X 2 nd E H Z L X Y comp C Z K = B F G comp Q H A Z 1 st F X 1 st F Z comp D 1 st H Z X 2 nd F Z L X Y comp C Z K
29 2 5 11 13 19 20 21 17 fuccoval φ B F G comp Q H A Z = B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z
30 29 oveq1d φ B F G comp Q H A Z 1 st F X 1 st F Z comp D 1 st H Z X 2 nd F Z L X Y comp C Z K = B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z 1 st F X 1 st F Z comp D 1 st H Z X 2 nd F Z L X Y comp C Z K
31 relfunc Rel C Func D
32 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
33 31 14 32 sylancr φ 1 st F C Func D 2 nd F
34 11 12 23 13 33 16 24 17 25 26 funcco φ X 2 nd F Z L X Y comp C Z K = Y 2 nd F Z L 1 st F X 1 st F Y comp D 1 st F Z X 2 nd F Y K
35 34 oveq2d φ B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z 1 st F X 1 st F Z comp D 1 st H Z X 2 nd F Z L X Y comp C Z K = B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z 1 st F X 1 st F Z comp D 1 st H Z Y 2 nd F Z L 1 st F X 1 st F Y comp D 1 st F Z X 2 nd F Y K
36 5 20 nat1st2nd φ A 1 st F 2 nd F N 1 st G 2 nd G
37 5 36 11 12 13 24 17 26 nati φ A Z 1 st F Y 1 st F Z comp D 1 st G Z Y 2 nd F Z L = Y 2 nd G Z L 1 st F Y 1 st G Y comp D 1 st G Z A Y
38 37 oveq2d φ B Z 1 st F Y 1 st G Z comp D 1 st H Z A Z 1 st F Y 1 st F Z comp D 1 st G Z Y 2 nd F Z L = B Z 1 st F Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st F Y 1 st G Y comp D 1 st G Z A Y
39 eqid Base D = Base D
40 eqid Hom D = Hom D
41 11 39 33 funcf1 φ 1 st F : Base C Base D
42 41 24 ffvelrnd φ 1 st F Y Base D
43 41 17 ffvelrnd φ 1 st F Z Base D
44 7 simpld φ G C Func D
45 1st2ndbr Rel C Func D G C Func D 1 st G C Func D 2 nd G
46 31 44 45 sylancr φ 1 st G C Func D 2 nd G
47 11 39 46 funcf1 φ 1 st G : Base C Base D
48 47 17 ffvelrnd φ 1 st G Z Base D
49 11 12 40 33 24 17 funcf2 φ Y 2 nd F Z : Y Hom C Z 1 st F Y Hom D 1 st F Z
50 49 26 ffvelrnd φ Y 2 nd F Z L 1 st F Y Hom D 1 st F Z
51 5 36 11 40 17 natcl φ A Z 1 st F Z Hom D 1 st G Z
52 1st2ndbr Rel C Func D H C Func D 1 st H C Func D 2 nd H
53 31 15 52 sylancr φ 1 st H C Func D 2 nd H
54 11 39 53 funcf1 φ 1 st H : Base C Base D
55 54 17 ffvelrnd φ 1 st H Z Base D
56 5 21 nat1st2nd φ B 1 st G 2 nd G N 1 st H 2 nd H
57 5 56 11 40 17 natcl φ B Z 1 st G Z Hom D 1 st H Z
58 39 40 13 4 42 43 48 50 51 55 57 catass φ B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z 1 st F Y 1 st F Z comp D 1 st H Z Y 2 nd F Z L = B Z 1 st F Y 1 st G Z comp D 1 st H Z A Z 1 st F Y 1 st F Z comp D 1 st G Z Y 2 nd F Z L
59 47 24 ffvelrnd φ 1 st G Y Base D
60 5 36 11 40 24 natcl φ A Y 1 st F Y Hom D 1 st G Y
61 11 12 40 46 24 17 funcf2 φ Y 2 nd G Z : Y Hom C Z 1 st G Y Hom D 1 st G Z
62 61 26 ffvelrnd φ Y 2 nd G Z L 1 st G Y Hom D 1 st G Z
63 39 40 13 4 42 59 48 60 62 55 57 catass φ B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st F Y 1 st G Y comp D 1 st H Z A Y = B Z 1 st F Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st F Y 1 st G Y comp D 1 st G Z A Y
64 38 58 63 3eqtr4d φ B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z 1 st F Y 1 st F Z comp D 1 st H Z Y 2 nd F Z L = B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st F Y 1 st G Y comp D 1 st H Z A Y
65 64 oveq1d φ B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z 1 st F Y 1 st F Z comp D 1 st H Z Y 2 nd F Z L 1 st F X 1 st F Y comp D 1 st H Z X 2 nd F Y K = B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st F Y 1 st G Y comp D 1 st H Z A Y 1 st F X 1 st F Y comp D 1 st H Z X 2 nd F Y K
66 41 16 ffvelrnd φ 1 st F X Base D
67 11 12 40 33 16 24 funcf2 φ X 2 nd F Y : X Hom C Y 1 st F X Hom D 1 st F Y
68 67 25 ffvelrnd φ X 2 nd F Y K 1 st F X Hom D 1 st F Y
69 39 40 13 4 43 48 55 51 57 catcocl φ B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z 1 st F Z Hom D 1 st H Z
70 39 40 13 4 66 42 43 68 50 55 69 catass φ B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z 1 st F Y 1 st F Z comp D 1 st H Z Y 2 nd F Z L 1 st F X 1 st F Y comp D 1 st H Z X 2 nd F Y K = B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z 1 st F X 1 st F Z comp D 1 st H Z Y 2 nd F Z L 1 st F X 1 st F Y comp D 1 st F Z X 2 nd F Y K
71 39 40 13 4 59 48 55 62 57 catcocl φ B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st G Y Hom D 1 st H Z
72 39 40 13 4 66 42 59 68 60 55 71 catass φ B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st F Y 1 st G Y comp D 1 st H Z A Y 1 st F X 1 st F Y comp D 1 st H Z X 2 nd F Y K = B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st F X 1 st G Y comp D 1 st H Z A Y 1 st F X 1 st F Y comp D 1 st G Y X 2 nd F Y K
73 65 70 72 3eqtr3d φ B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z 1 st F X 1 st F Z comp D 1 st H Z Y 2 nd F Z L 1 st F X 1 st F Y comp D 1 st F Z X 2 nd F Y K = B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st F X 1 st G Y comp D 1 st H Z A Y 1 st F X 1 st F Y comp D 1 st G Y X 2 nd F Y K
74 35 73 eqtrd φ B Z 1 st F Z 1 st G Z comp D 1 st H Z A Z 1 st F X 1 st F Z comp D 1 st H Z X 2 nd F Z L X Y comp C Z K = B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st F X 1 st G Y comp D 1 st H Z A Y 1 st F X 1 st F Y comp D 1 st G Y X 2 nd F Y K
75 28 30 74 3eqtrd φ B F G comp Q H A F X 2 nd E H Z L X Y comp C Z K = B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st F X 1 st G Y comp D 1 st H Z A Y 1 st F X 1 st F Y comp D 1 st G Y X 2 nd F Y K
76 eqid Q × c C = Q × c C
77 2 fucbas C Func D = Base Q
78 2 5 fuchom N = Hom Q
79 eqid comp Q × c C = comp Q × c C
80 76 77 11 78 12 14 16 44 24 19 23 79 15 17 20 25 21 26 xpcco2 φ B L F X G Y comp Q × c C H Z A K = B F G comp Q H A L X Y comp C Z K
81 80 fveq2d φ F X 2 nd E H Z B L F X G Y comp Q × c C H Z A K = F X 2 nd E H Z B F G comp Q H A L X Y comp C Z K
82 df-ov B F G comp Q H A F X 2 nd E H Z L X Y comp C Z K = F X 2 nd E H Z B F G comp Q H A L X Y comp C Z K
83 81 82 eqtr4di φ F X 2 nd E H Z B L F X G Y comp Q × c C H Z A K = B F G comp Q H A F X 2 nd E H Z L X Y comp C Z K
84 df-ov F 1 st E X = 1 st E F X
85 1 3 4 11 14 16 evlf1 φ F 1 st E X = 1 st F X
86 84 85 eqtr3id φ 1 st E F X = 1 st F X
87 df-ov G 1 st E Y = 1 st E G Y
88 1 3 4 11 44 24 evlf1 φ G 1 st E Y = 1 st G Y
89 87 88 eqtr3id φ 1 st E G Y = 1 st G Y
90 86 89 opeq12d φ 1 st E F X 1 st E G Y = 1 st F X 1 st G Y
91 df-ov H 1 st E Z = 1 st E H Z
92 1 3 4 11 15 17 evlf1 φ H 1 st E Z = 1 st H Z
93 91 92 eqtr3id φ 1 st E H Z = 1 st H Z
94 90 93 oveq12d φ 1 st E F X 1 st E G Y comp D 1 st E H Z = 1 st F X 1 st G Y comp D 1 st H Z
95 df-ov B G Y 2 nd E H Z L = G Y 2 nd E H Z B L
96 eqid G Y 2 nd E H Z = G Y 2 nd E H Z
97 1 3 4 11 12 13 5 44 15 24 17 96 21 26 evlf2val φ B G Y 2 nd E H Z L = B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L
98 95 97 eqtr3id φ G Y 2 nd E H Z B L = B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L
99 df-ov A F X 2 nd E G Y K = F X 2 nd E G Y A K
100 eqid F X 2 nd E G Y = F X 2 nd E G Y
101 1 3 4 11 12 13 5 14 44 16 24 100 20 25 evlf2val φ A F X 2 nd E G Y K = A Y 1 st F X 1 st F Y comp D 1 st G Y X 2 nd F Y K
102 99 101 eqtr3id φ F X 2 nd E G Y A K = A Y 1 st F X 1 st F Y comp D 1 st G Y X 2 nd F Y K
103 94 98 102 oveq123d φ G Y 2 nd E H Z B L 1 st E F X 1 st E G Y comp D 1 st E H Z F X 2 nd E G Y A K = B Z 1 st G Y 1 st G Z comp D 1 st H Z Y 2 nd G Z L 1 st F X 1 st G Y comp D 1 st H Z A Y 1 st F X 1 st F Y comp D 1 st G Y X 2 nd F Y K
104 75 83 103 3eqtr4d φ F X 2 nd E H Z B L F X G Y comp Q × c C H Z A K = G Y 2 nd E H Z B L 1 st E F X 1 st E G Y comp D 1 st E H Z F X 2 nd E G Y A K