Metamath Proof Explorer


Theorem funcf1

Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses funcf1.b B=BaseD
funcf1.c C=BaseE
funcf1.f φFDFuncEG
Assertion funcf1 φF:BC

Proof

Step Hyp Ref Expression
1 funcf1.b B=BaseD
2 funcf1.c C=BaseE
3 funcf1.f φFDFuncEG
4 eqid HomD=HomD
5 eqid HomE=HomE
6 eqid IdD=IdD
7 eqid IdE=IdE
8 eqid compD=compD
9 eqid compE=compE
10 df-br FDFuncEGFGDFuncE
11 3 10 sylib φFGDFuncE
12 funcrcl FGDFuncEDCatECat
13 11 12 syl φDCatECat
14 13 simpld φDCat
15 13 simprd φECat
16 1 2 4 5 6 7 8 9 14 15 isfunc φFDFuncEGF:BCGzB×BF1stzHomEF2ndzHomDzxBxGxIdDx=IdEFxyBzBmxHomDynyHomDzxGznxycompDzm=yGznFxFycompEFzxGym
17 3 16 mpbid φF:BCGzB×BF1stzHomEF2ndzHomDzxBxGxIdDx=IdEFxyBzBmxHomDynyHomDzxGznxycompDzm=yGznFxFycompEFzxGym
18 17 simp1d φF:BC