Metamath Proof Explorer


Theorem funcixp

Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses funcixp.b B=BaseD
funcixp.h H=HomD
funcixp.j J=HomE
funcixp.f φFDFuncEG
Assertion funcixp φGzB×BF1stzJF2ndzHz

Proof

Step Hyp Ref Expression
1 funcixp.b B=BaseD
2 funcixp.h H=HomD
3 funcixp.j J=HomE
4 funcixp.f φFDFuncEG
5 eqid BaseE=BaseE
6 eqid IdD=IdD
7 eqid IdE=IdE
8 eqid compD=compD
9 eqid compE=compE
10 df-br FDFuncEGFGDFuncE
11 4 10 sylib φFGDFuncE
12 funcrcl FGDFuncEDCatECat
13 11 12 syl φDCatECat
14 13 simpld φDCat
15 13 simprd φECat
16 1 5 2 3 6 7 8 9 14 15 isfunc φFDFuncEGF:BBaseEGzB×BF1stzJF2ndzHzxBxGxIdDx=IdEFxyBzBmxHynyHzxGznxycompDzm=yGznFxFycompEFzxGym
17 4 16 mpbid φF:BBaseEGzB×BF1stzJF2ndzHzxBxGxIdDx=IdEFxyBzBmxHynyHzxGznxycompDzm=yGznFxFycompEFzxGym
18 17 simp2d φGzB×BF1stzJF2ndzHz