| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlfcl.e |
|- E = ( C evalF D ) |
| 2 |
|
evlfcl.q |
|- Q = ( C FuncCat D ) |
| 3 |
|
evlfcl.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
evlfcl.d |
|- ( ph -> D e. Cat ) |
| 5 |
|
evlfcl.n |
|- N = ( C Nat D ) |
| 6 |
|
evlfcl.f |
|- ( ph -> ( F e. ( C Func D ) /\ X e. ( Base ` C ) ) ) |
| 7 |
|
evlfcl.g |
|- ( ph -> ( G e. ( C Func D ) /\ Y e. ( Base ` C ) ) ) |
| 8 |
|
evlfcl.h |
|- ( ph -> ( H e. ( C Func D ) /\ Z e. ( Base ` C ) ) ) |
| 9 |
|
evlfcl.a |
|- ( ph -> ( A e. ( F N G ) /\ K e. ( X ( Hom ` C ) Y ) ) ) |
| 10 |
|
evlfcl.b |
|- ( ph -> ( B e. ( G N H ) /\ L e. ( Y ( Hom ` C ) Z ) ) ) |
| 11 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 12 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 13 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 14 |
6
|
simpld |
|- ( ph -> F e. ( C Func D ) ) |
| 15 |
8
|
simpld |
|- ( ph -> H e. ( C Func D ) ) |
| 16 |
6
|
simprd |
|- ( ph -> X e. ( Base ` C ) ) |
| 17 |
8
|
simprd |
|- ( ph -> Z e. ( Base ` C ) ) |
| 18 |
|
eqid |
|- ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) = ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) |
| 19 |
|
eqid |
|- ( comp ` Q ) = ( comp ` Q ) |
| 20 |
9
|
simpld |
|- ( ph -> A e. ( F N G ) ) |
| 21 |
10
|
simpld |
|- ( ph -> B e. ( G N H ) ) |
| 22 |
2 5 19 20 21
|
fuccocl |
|- ( ph -> ( B ( <. F , G >. ( comp ` Q ) H ) A ) e. ( F N H ) ) |
| 23 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 24 |
7
|
simprd |
|- ( ph -> Y e. ( Base ` C ) ) |
| 25 |
9
|
simprd |
|- ( ph -> K e. ( X ( Hom ` C ) Y ) ) |
| 26 |
10
|
simprd |
|- ( ph -> L e. ( Y ( Hom ` C ) Z ) ) |
| 27 |
11 12 23 3 16 24 17 25 26
|
catcocl |
|- ( ph -> ( L ( <. X , Y >. ( comp ` C ) Z ) K ) e. ( X ( Hom ` C ) Z ) ) |
| 28 |
1 3 4 11 12 13 5 14 15 16 17 18 22 27
|
evlf2val |
|- ( ph -> ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) = ( ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ` Z ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) ) |
| 29 |
2 5 11 13 19 20 21 17
|
fuccoval |
|- ( ph -> ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ` Z ) = ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ) |
| 30 |
29
|
oveq1d |
|- ( ph -> ( ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ` Z ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) ) |
| 31 |
|
relfunc |
|- Rel ( C Func D ) |
| 32 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 33 |
31 14 32
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 34 |
11 12 23 13 33 16 24 17 25 26
|
funcco |
|- ( ph -> ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) = ( ( ( Y ( 2nd ` F ) Z ) ` L ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` F ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) |
| 35 |
34
|
oveq2d |
|- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( ( Y ( 2nd ` F ) Z ) ` L ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` F ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 36 |
5 20
|
nat1st2nd |
|- ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 37 |
5 36 11 12 13 24 17 26
|
nati |
|- ( ph -> ( ( A ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) = ( ( ( Y ( 2nd ` G ) Z ) ` L ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( A ` Y ) ) ) |
| 38 |
37
|
oveq2d |
|- ( ph -> ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) ) = ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( ( Y ( 2nd ` G ) Z ) ` L ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( A ` Y ) ) ) ) |
| 39 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 40 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 41 |
11 39 33
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 42 |
41 24
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` F ) ` Y ) e. ( Base ` D ) ) |
| 43 |
41 17
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` F ) ` Z ) e. ( Base ` D ) ) |
| 44 |
7
|
simpld |
|- ( ph -> G e. ( C Func D ) ) |
| 45 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 46 |
31 44 45
|
sylancr |
|- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 47 |
11 39 46
|
funcf1 |
|- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` D ) ) |
| 48 |
47 17
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` G ) ` Z ) e. ( Base ` D ) ) |
| 49 |
11 12 40 33 24 17
|
funcf2 |
|- ( ph -> ( Y ( 2nd ` F ) Z ) : ( Y ( Hom ` C ) Z ) --> ( ( ( 1st ` F ) ` Y ) ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) ) |
| 50 |
49 26
|
ffvelcdmd |
|- ( ph -> ( ( Y ( 2nd ` F ) Z ) ` L ) e. ( ( ( 1st ` F ) ` Y ) ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) ) |
| 51 |
5 36 11 40 17
|
natcl |
|- ( ph -> ( A ` Z ) e. ( ( ( 1st ` F ) ` Z ) ( Hom ` D ) ( ( 1st ` G ) ` Z ) ) ) |
| 52 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ H e. ( C Func D ) ) -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
| 53 |
31 15 52
|
sylancr |
|- ( ph -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
| 54 |
11 39 53
|
funcf1 |
|- ( ph -> ( 1st ` H ) : ( Base ` C ) --> ( Base ` D ) ) |
| 55 |
54 17
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` H ) ` Z ) e. ( Base ` D ) ) |
| 56 |
5 21
|
nat1st2nd |
|- ( ph -> B e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` H ) , ( 2nd ` H ) >. ) ) |
| 57 |
5 56 11 40 17
|
natcl |
|- ( ph -> ( B ` Z ) e. ( ( ( 1st ` G ) ` Z ) ( Hom ` D ) ( ( 1st ` H ) ` Z ) ) ) |
| 58 |
39 40 13 4 42 43 48 50 51 55 57
|
catass |
|- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) = ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) ) ) |
| 59 |
47 24
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` G ) ` Y ) e. ( Base ` D ) ) |
| 60 |
5 36 11 40 24
|
natcl |
|- ( ph -> ( A ` Y ) e. ( ( ( 1st ` F ) ` Y ) ( Hom ` D ) ( ( 1st ` G ) ` Y ) ) ) |
| 61 |
11 12 40 46 24 17
|
funcf2 |
|- ( ph -> ( Y ( 2nd ` G ) Z ) : ( Y ( Hom ` C ) Z ) --> ( ( ( 1st ` G ) ` Y ) ( Hom ` D ) ( ( 1st ` G ) ` Z ) ) ) |
| 62 |
61 26
|
ffvelcdmd |
|- ( ph -> ( ( Y ( 2nd ` G ) Z ) ` L ) e. ( ( ( 1st ` G ) ` Y ) ( Hom ` D ) ( ( 1st ` G ) ` Z ) ) ) |
| 63 |
39 40 13 4 42 59 48 60 62 55 57
|
catass |
|- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Y ) ) = ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( ( Y ( 2nd ` G ) Z ) ` L ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Z ) ) ( A ` Y ) ) ) ) |
| 64 |
38 58 63
|
3eqtr4d |
|- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Y ) ) ) |
| 65 |
64
|
oveq1d |
|- ( ph -> ( ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) = ( ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Y ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) |
| 66 |
41 16
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` F ) ` X ) e. ( Base ` D ) ) |
| 67 |
11 12 40 33 16 24
|
funcf2 |
|- ( ph -> ( X ( 2nd ` F ) Y ) : ( X ( Hom ` C ) Y ) --> ( ( ( 1st ` F ) ` X ) ( Hom ` D ) ( ( 1st ` F ) ` Y ) ) ) |
| 68 |
67 25
|
ffvelcdmd |
|- ( ph -> ( ( X ( 2nd ` F ) Y ) ` K ) e. ( ( ( 1st ` F ) ` X ) ( Hom ` D ) ( ( 1st ` F ) ` Y ) ) ) |
| 69 |
39 40 13 4 43 48 55 51 57
|
catcocl |
|- ( ph -> ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) e. ( ( ( 1st ` F ) ` Z ) ( Hom ` D ) ( ( 1st ` H ) ` Z ) ) ) |
| 70 |
39 40 13 4 66 42 43 68 50 55 69
|
catass |
|- ( ph -> ( ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` F ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( ( Y ( 2nd ` F ) Z ) ` L ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` F ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 71 |
39 40 13 4 59 48 55 62 57
|
catcocl |
|- ( ph -> ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) e. ( ( ( 1st ` G ) ` Y ) ( Hom ` D ) ( ( 1st ` H ) ` Z ) ) ) |
| 72 |
39 40 13 4 66 42 59 68 60 55 71
|
catass |
|- ( ph -> ( ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` Y ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Y ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 73 |
65 70 72
|
3eqtr3d |
|- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( ( Y ( 2nd ` F ) Z ) ` L ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` F ) ` Z ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 74 |
35 73
|
eqtrd |
|- ( ph -> ( ( ( B ` Z ) ( <. ( ( 1st ` F ) ` Z ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( A ` Z ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( X ( 2nd ` F ) Z ) ` ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 75 |
28 30 74
|
3eqtrd |
|- ( ph -> ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 76 |
|
eqid |
|- ( Q Xc. C ) = ( Q Xc. C ) |
| 77 |
2
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
| 78 |
2 5
|
fuchom |
|- N = ( Hom ` Q ) |
| 79 |
|
eqid |
|- ( comp ` ( Q Xc. C ) ) = ( comp ` ( Q Xc. C ) ) |
| 80 |
76 77 11 78 12 14 16 44 24 19 23 79 15 17 20 25 21 26
|
xpcco2 |
|- ( ph -> ( <. B , L >. ( <. <. F , X >. , <. G , Y >. >. ( comp ` ( Q Xc. C ) ) <. H , Z >. ) <. A , K >. ) = <. ( B ( <. F , G >. ( comp ` Q ) H ) A ) , ( L ( <. X , Y >. ( comp ` C ) Z ) K ) >. ) |
| 81 |
80
|
fveq2d |
|- ( ph -> ( ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ` ( <. B , L >. ( <. <. F , X >. , <. G , Y >. >. ( comp ` ( Q Xc. C ) ) <. H , Z >. ) <. A , K >. ) ) = ( ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ` <. ( B ( <. F , G >. ( comp ` Q ) H ) A ) , ( L ( <. X , Y >. ( comp ` C ) Z ) K ) >. ) ) |
| 82 |
|
df-ov |
|- ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) = ( ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ` <. ( B ( <. F , G >. ( comp ` Q ) H ) A ) , ( L ( <. X , Y >. ( comp ` C ) Z ) K ) >. ) |
| 83 |
81 82
|
eqtr4di |
|- ( ph -> ( ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ` ( <. B , L >. ( <. <. F , X >. , <. G , Y >. >. ( comp ` ( Q Xc. C ) ) <. H , Z >. ) <. A , K >. ) ) = ( ( B ( <. F , G >. ( comp ` Q ) H ) A ) ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ( L ( <. X , Y >. ( comp ` C ) Z ) K ) ) ) |
| 84 |
|
df-ov |
|- ( F ( 1st ` E ) X ) = ( ( 1st ` E ) ` <. F , X >. ) |
| 85 |
1 3 4 11 14 16
|
evlf1 |
|- ( ph -> ( F ( 1st ` E ) X ) = ( ( 1st ` F ) ` X ) ) |
| 86 |
84 85
|
eqtr3id |
|- ( ph -> ( ( 1st ` E ) ` <. F , X >. ) = ( ( 1st ` F ) ` X ) ) |
| 87 |
|
df-ov |
|- ( G ( 1st ` E ) Y ) = ( ( 1st ` E ) ` <. G , Y >. ) |
| 88 |
1 3 4 11 44 24
|
evlf1 |
|- ( ph -> ( G ( 1st ` E ) Y ) = ( ( 1st ` G ) ` Y ) ) |
| 89 |
87 88
|
eqtr3id |
|- ( ph -> ( ( 1st ` E ) ` <. G , Y >. ) = ( ( 1st ` G ) ` Y ) ) |
| 90 |
86 89
|
opeq12d |
|- ( ph -> <. ( ( 1st ` E ) ` <. F , X >. ) , ( ( 1st ` E ) ` <. G , Y >. ) >. = <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ) |
| 91 |
|
df-ov |
|- ( H ( 1st ` E ) Z ) = ( ( 1st ` E ) ` <. H , Z >. ) |
| 92 |
1 3 4 11 15 17
|
evlf1 |
|- ( ph -> ( H ( 1st ` E ) Z ) = ( ( 1st ` H ) ` Z ) ) |
| 93 |
91 92
|
eqtr3id |
|- ( ph -> ( ( 1st ` E ) ` <. H , Z >. ) = ( ( 1st ` H ) ` Z ) ) |
| 94 |
90 93
|
oveq12d |
|- ( ph -> ( <. ( ( 1st ` E ) ` <. F , X >. ) , ( ( 1st ` E ) ` <. G , Y >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. H , Z >. ) ) = ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ) |
| 95 |
|
df-ov |
|- ( B ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) L ) = ( ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) ` <. B , L >. ) |
| 96 |
|
eqid |
|- ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) = ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) |
| 97 |
1 3 4 11 12 13 5 44 15 24 17 96 21 26
|
evlf2val |
|- ( ph -> ( B ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) L ) = ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ) |
| 98 |
95 97
|
eqtr3id |
|- ( ph -> ( ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) ` <. B , L >. ) = ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ) |
| 99 |
|
df-ov |
|- ( A ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) K ) = ( ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) ` <. A , K >. ) |
| 100 |
|
eqid |
|- ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) = ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) |
| 101 |
1 3 4 11 12 13 5 14 44 16 24 100 20 25
|
evlf2val |
|- ( ph -> ( A ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) K ) = ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) |
| 102 |
99 101
|
eqtr3id |
|- ( ph -> ( ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) ` <. A , K >. ) = ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) |
| 103 |
94 98 102
|
oveq123d |
|- ( ph -> ( ( ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) ` <. B , L >. ) ( <. ( ( 1st ` E ) ` <. F , X >. ) , ( ( 1st ` E ) ` <. G , Y >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. H , Z >. ) ) ( ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) ` <. A , K >. ) ) = ( ( ( B ` Z ) ( <. ( ( 1st ` G ) ` Y ) , ( ( 1st ` G ) ` Z ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( Y ( 2nd ` G ) Z ) ` L ) ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` G ) ` Y ) >. ( comp ` D ) ( ( 1st ` H ) ` Z ) ) ( ( A ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ( comp ` D ) ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` K ) ) ) ) |
| 104 |
75 83 103
|
3eqtr4d |
|- ( ph -> ( ( <. F , X >. ( 2nd ` E ) <. H , Z >. ) ` ( <. B , L >. ( <. <. F , X >. , <. G , Y >. >. ( comp ` ( Q Xc. C ) ) <. H , Z >. ) <. A , K >. ) ) = ( ( ( <. G , Y >. ( 2nd ` E ) <. H , Z >. ) ` <. B , L >. ) ( <. ( ( 1st ` E ) ` <. F , X >. ) , ( ( 1st ` E ) ` <. G , Y >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. H , Z >. ) ) ( ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) ` <. A , K >. ) ) ) |