Step |
Hyp |
Ref |
Expression |
1 |
|
evlfcl.e |
|- E = ( C evalF D ) |
2 |
|
evlfcl.q |
|- Q = ( C FuncCat D ) |
3 |
|
evlfcl.c |
|- ( ph -> C e. Cat ) |
4 |
|
evlfcl.d |
|- ( ph -> D e. Cat ) |
5 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
6 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
7 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
8 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
9 |
1 3 4 5 6 7 8
|
evlfval |
|- ( ph -> E = <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. ) |
10 |
|
ovex |
|- ( C Func D ) e. _V |
11 |
|
fvex |
|- ( Base ` C ) e. _V |
12 |
10 11
|
mpoex |
|- ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) e. _V |
13 |
10 11
|
xpex |
|- ( ( C Func D ) X. ( Base ` C ) ) e. _V |
14 |
13 13
|
mpoex |
|- ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) e. _V |
15 |
12 14
|
opelvv |
|- <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. e. ( _V X. _V ) |
16 |
9 15
|
eqeltrdi |
|- ( ph -> E e. ( _V X. _V ) ) |
17 |
|
1st2nd2 |
|- ( E e. ( _V X. _V ) -> E = <. ( 1st ` E ) , ( 2nd ` E ) >. ) |
18 |
16 17
|
syl |
|- ( ph -> E = <. ( 1st ` E ) , ( 2nd ` E ) >. ) |
19 |
|
eqid |
|- ( Q Xc. C ) = ( Q Xc. C ) |
20 |
2
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
21 |
19 20 5
|
xpcbas |
|- ( ( C Func D ) X. ( Base ` C ) ) = ( Base ` ( Q Xc. C ) ) |
22 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
23 |
|
eqid |
|- ( Hom ` ( Q Xc. C ) ) = ( Hom ` ( Q Xc. C ) ) |
24 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
25 |
|
eqid |
|- ( Id ` ( Q Xc. C ) ) = ( Id ` ( Q Xc. C ) ) |
26 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
27 |
|
eqid |
|- ( comp ` ( Q Xc. C ) ) = ( comp ` ( Q Xc. C ) ) |
28 |
2 3 4
|
fuccat |
|- ( ph -> Q e. Cat ) |
29 |
19 28 3
|
xpccat |
|- ( ph -> ( Q Xc. C ) e. Cat ) |
30 |
|
relfunc |
|- Rel ( C Func D ) |
31 |
|
simpr |
|- ( ( ph /\ f e. ( C Func D ) ) -> f e. ( C Func D ) ) |
32 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ f e. ( C Func D ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
33 |
30 31 32
|
sylancr |
|- ( ( ph /\ f e. ( C Func D ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
34 |
5 22 33
|
funcf1 |
|- ( ( ph /\ f e. ( C Func D ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
35 |
34
|
ffvelrnda |
|- ( ( ( ph /\ f e. ( C Func D ) ) /\ x e. ( Base ` C ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` D ) ) |
36 |
35
|
ralrimiva |
|- ( ( ph /\ f e. ( C Func D ) ) -> A. x e. ( Base ` C ) ( ( 1st ` f ) ` x ) e. ( Base ` D ) ) |
37 |
36
|
ralrimiva |
|- ( ph -> A. f e. ( C Func D ) A. x e. ( Base ` C ) ( ( 1st ` f ) ` x ) e. ( Base ` D ) ) |
38 |
|
eqid |
|- ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) = ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) |
39 |
38
|
fmpo |
|- ( A. f e. ( C Func D ) A. x e. ( Base ` C ) ( ( 1st ` f ) ` x ) e. ( Base ` D ) <-> ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) |
40 |
37 39
|
sylib |
|- ( ph -> ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) |
41 |
12 14
|
op1std |
|- ( E = <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. -> ( 1st ` E ) = ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) ) |
42 |
9 41
|
syl |
|- ( ph -> ( 1st ` E ) = ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) ) |
43 |
42
|
feq1d |
|- ( ph -> ( ( 1st ` E ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) <-> ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) ) |
44 |
40 43
|
mpbird |
|- ( ph -> ( 1st ` E ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) |
45 |
|
eqid |
|- ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) = ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) |
46 |
|
ovex |
|- ( m ( C Nat D ) n ) e. _V |
47 |
|
ovex |
|- ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) e. _V |
48 |
46 47
|
mpoex |
|- ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) e. _V |
49 |
48
|
csbex |
|- [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) e. _V |
50 |
49
|
csbex |
|- [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) e. _V |
51 |
45 50
|
fnmpoi |
|- ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) |
52 |
12 14
|
op2ndd |
|- ( E = <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
53 |
9 52
|
syl |
|- ( ph -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
54 |
53
|
fneq1d |
|- ( ph -> ( ( 2nd ` E ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) <-> ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) ) ) |
55 |
51 54
|
mpbiri |
|- ( ph -> ( 2nd ` E ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) ) |
56 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> D e. Cat ) |
57 |
56
|
adantr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> D e. Cat ) |
58 |
|
simplrl |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> f e. ( C Func D ) ) |
59 |
30 58 32
|
sylancr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
60 |
5 22 59
|
funcf1 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
61 |
60
|
adantr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
62 |
|
simplrr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> u e. ( Base ` C ) ) |
63 |
62
|
adantr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> u e. ( Base ` C ) ) |
64 |
61 63
|
ffvelrnd |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( 1st ` f ) ` u ) e. ( Base ` D ) ) |
65 |
|
simplrr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> v e. ( Base ` C ) ) |
66 |
61 65
|
ffvelrnd |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( 1st ` f ) ` v ) e. ( Base ` D ) ) |
67 |
|
simprl |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> g e. ( C Func D ) ) |
68 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ g e. ( C Func D ) ) -> ( 1st ` g ) ( C Func D ) ( 2nd ` g ) ) |
69 |
30 67 68
|
sylancr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` g ) ( C Func D ) ( 2nd ` g ) ) |
70 |
5 22 69
|
funcf1 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` g ) : ( Base ` C ) --> ( Base ` D ) ) |
71 |
70
|
adantr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( 1st ` g ) : ( Base ` C ) --> ( Base ` D ) ) |
72 |
71 65
|
ffvelrnd |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( 1st ` g ) ` v ) e. ( Base ` D ) ) |
73 |
|
simprr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> v e. ( Base ` C ) ) |
74 |
5 6 24 59 62 73
|
funcf2 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( u ( 2nd ` f ) v ) : ( u ( Hom ` C ) v ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` v ) ) ) |
75 |
74
|
adantr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( u ( 2nd ` f ) v ) : ( u ( Hom ` C ) v ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` v ) ) ) |
76 |
|
simprr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> h e. ( u ( Hom ` C ) v ) ) |
77 |
75 76
|
ffvelrnd |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( u ( 2nd ` f ) v ) ` h ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` v ) ) ) |
78 |
|
simprl |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> a e. ( f ( C Nat D ) g ) ) |
79 |
8 78
|
nat1st2nd |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> a e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
80 |
8 79 5 24 65
|
natcl |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( a ` v ) e. ( ( ( 1st ` f ) ` v ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
81 |
22 24 7 57 64 66 72 77 80
|
catcocl |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
82 |
81
|
ralrimivva |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> A. a e. ( f ( C Nat D ) g ) A. h e. ( u ( Hom ` C ) v ) ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
83 |
|
eqid |
|- ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) = ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) |
84 |
83
|
fmpo |
|- ( A. a e. ( f ( C Nat D ) g ) A. h e. ( u ( Hom ` C ) v ) ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) <-> ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
85 |
82 84
|
sylib |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
86 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> C e. Cat ) |
87 |
|
eqid |
|- ( <. f , u >. ( 2nd ` E ) <. g , v >. ) = ( <. f , u >. ( 2nd ` E ) <. g , v >. ) |
88 |
1 86 56 5 6 7 8 58 67 62 73 87
|
evlf2 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) = ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) ) |
89 |
88
|
feq1d |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) <-> ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) ) |
90 |
85 89
|
mpbird |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
91 |
2 8
|
fuchom |
|- ( C Nat D ) = ( Hom ` Q ) |
92 |
19 20 5 91 6 58 62 67 73 23
|
xpchom2 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) = ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) ) |
93 |
1 86 56 5 58 62
|
evlf1 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( f ( 1st ` E ) u ) = ( ( 1st ` f ) ` u ) ) |
94 |
1 86 56 5 67 73
|
evlf1 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( g ( 1st ` E ) v ) = ( ( 1st ` g ) ` v ) ) |
95 |
93 94
|
oveq12d |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) = ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
96 |
92 95
|
feq23d |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) <-> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) ) |
97 |
90 96
|
mpbird |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
98 |
97
|
ralrimivva |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
99 |
98
|
ralrimivva |
|- ( ph -> A. f e. ( C Func D ) A. u e. ( Base ` C ) A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
100 |
|
oveq2 |
|- ( y = <. g , v >. -> ( x ( 2nd ` E ) y ) = ( x ( 2nd ` E ) <. g , v >. ) ) |
101 |
|
oveq2 |
|- ( y = <. g , v >. -> ( x ( Hom ` ( Q Xc. C ) ) y ) = ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) ) |
102 |
|
fveq2 |
|- ( y = <. g , v >. -> ( ( 1st ` E ) ` y ) = ( ( 1st ` E ) ` <. g , v >. ) ) |
103 |
|
df-ov |
|- ( g ( 1st ` E ) v ) = ( ( 1st ` E ) ` <. g , v >. ) |
104 |
102 103
|
eqtr4di |
|- ( y = <. g , v >. -> ( ( 1st ` E ) ` y ) = ( g ( 1st ` E ) v ) ) |
105 |
104
|
oveq2d |
|- ( y = <. g , v >. -> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) = ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
106 |
100 101 105
|
feq123d |
|- ( y = <. g , v >. -> ( ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
107 |
106
|
ralxp |
|- ( A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
108 |
|
oveq1 |
|- ( x = <. f , u >. -> ( x ( 2nd ` E ) <. g , v >. ) = ( <. f , u >. ( 2nd ` E ) <. g , v >. ) ) |
109 |
|
oveq1 |
|- ( x = <. f , u >. -> ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) = ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) ) |
110 |
|
fveq2 |
|- ( x = <. f , u >. -> ( ( 1st ` E ) ` x ) = ( ( 1st ` E ) ` <. f , u >. ) ) |
111 |
|
df-ov |
|- ( f ( 1st ` E ) u ) = ( ( 1st ` E ) ` <. f , u >. ) |
112 |
110 111
|
eqtr4di |
|- ( x = <. f , u >. -> ( ( 1st ` E ) ` x ) = ( f ( 1st ` E ) u ) ) |
113 |
112
|
oveq1d |
|- ( x = <. f , u >. -> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) = ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
114 |
108 109 113
|
feq123d |
|- ( x = <. f , u >. -> ( ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) <-> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
115 |
114
|
2ralbidv |
|- ( x = <. f , u >. -> ( A. g e. ( C Func D ) A. v e. ( Base ` C ) ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) <-> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
116 |
107 115
|
syl5bb |
|- ( x = <. f , u >. -> ( A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
117 |
116
|
ralxp |
|- ( A. x e. ( ( C Func D ) X. ( Base ` C ) ) A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> A. f e. ( C Func D ) A. u e. ( Base ` C ) A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
118 |
99 117
|
sylibr |
|- ( ph -> A. x e. ( ( C Func D ) X. ( Base ` C ) ) A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
119 |
118
|
r19.21bi |
|- ( ( ph /\ x e. ( ( C Func D ) X. ( Base ` C ) ) ) -> A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
120 |
119
|
r19.21bi |
|- ( ( ( ph /\ x e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) ) -> ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
121 |
120
|
anasss |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) ) ) -> ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
122 |
28
|
adantr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> Q e. Cat ) |
123 |
3
|
adantr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> C e. Cat ) |
124 |
|
eqid |
|- ( Id ` Q ) = ( Id ` Q ) |
125 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
126 |
|
simprl |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> f e. ( C Func D ) ) |
127 |
|
simprr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> u e. ( Base ` C ) ) |
128 |
19 122 123 20 5 124 125 25 126 127
|
xpcid |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) = <. ( ( Id ` Q ) ` f ) , ( ( Id ` C ) ` u ) >. ) |
129 |
128
|
fveq2d |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` <. ( ( Id ` Q ) ` f ) , ( ( Id ` C ) ` u ) >. ) ) |
130 |
|
df-ov |
|- ( ( ( Id ` Q ) ` f ) ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ( ( Id ` C ) ` u ) ) = ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` <. ( ( Id ` Q ) ` f ) , ( ( Id ` C ) ` u ) >. ) |
131 |
129 130
|
eqtr4di |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( ( Id ` Q ) ` f ) ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ( ( Id ` C ) ` u ) ) ) |
132 |
4
|
adantr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> D e. Cat ) |
133 |
|
eqid |
|- ( <. f , u >. ( 2nd ` E ) <. f , u >. ) = ( <. f , u >. ( 2nd ` E ) <. f , u >. ) |
134 |
20 91 124 122 126
|
catidcl |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` Q ) ` f ) e. ( f ( C Nat D ) f ) ) |
135 |
5 6 125 123 127
|
catidcl |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` C ) ` u ) e. ( u ( Hom ` C ) u ) ) |
136 |
1 123 132 5 6 7 8 126 126 127 127 133 134 135
|
evlf2val |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` Q ) ` f ) ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ( ( Id ` C ) ` u ) ) = ( ( ( ( Id ` Q ) ` f ) ` u ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) ) ) |
137 |
30 126 32
|
sylancr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
138 |
5 22 137
|
funcf1 |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
139 |
138 127
|
ffvelrnd |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( 1st ` f ) ` u ) e. ( Base ` D ) ) |
140 |
22 24 26 132 139
|
catidcl |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` u ) ) ) |
141 |
22 24 26 132 139 7 139 140
|
catlid |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
142 |
2 124 26 126
|
fucid |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` Q ) ` f ) = ( ( Id ` D ) o. ( 1st ` f ) ) ) |
143 |
142
|
fveq1d |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` Q ) ` f ) ` u ) = ( ( ( Id ` D ) o. ( 1st ` f ) ) ` u ) ) |
144 |
|
fvco3 |
|- ( ( ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) /\ u e. ( Base ` C ) ) -> ( ( ( Id ` D ) o. ( 1st ` f ) ) ` u ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
145 |
138 127 144
|
syl2anc |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` D ) o. ( 1st ` f ) ) ` u ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
146 |
143 145
|
eqtrd |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` Q ) ` f ) ` u ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
147 |
5 125 26 137 127
|
funcid |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
148 |
146 147
|
oveq12d |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( ( Id ` Q ) ` f ) ` u ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) ) = ( ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) ) |
149 |
1 123 132 5 126 127
|
evlf1 |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( f ( 1st ` E ) u ) = ( ( 1st ` f ) ` u ) ) |
150 |
149
|
fveq2d |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
151 |
141 148 150
|
3eqtr4d |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( ( Id ` Q ) ` f ) ` u ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
152 |
131 136 151
|
3eqtrd |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
153 |
152
|
ralrimivva |
|- ( ph -> A. f e. ( C Func D ) A. u e. ( Base ` C ) ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
154 |
|
id |
|- ( x = <. f , u >. -> x = <. f , u >. ) |
155 |
154 154
|
oveq12d |
|- ( x = <. f , u >. -> ( x ( 2nd ` E ) x ) = ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ) |
156 |
|
fveq2 |
|- ( x = <. f , u >. -> ( ( Id ` ( Q Xc. C ) ) ` x ) = ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) |
157 |
155 156
|
fveq12d |
|- ( x = <. f , u >. -> ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) ) |
158 |
112
|
fveq2d |
|- ( x = <. f , u >. -> ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
159 |
157 158
|
eqeq12d |
|- ( x = <. f , u >. -> ( ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) <-> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) ) |
160 |
159
|
ralxp |
|- ( A. x e. ( ( C Func D ) X. ( Base ` C ) ) ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) <-> A. f e. ( C Func D ) A. u e. ( Base ` C ) ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
161 |
153 160
|
sylibr |
|- ( ph -> A. x e. ( ( C Func D ) X. ( Base ` C ) ) ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) ) |
162 |
161
|
r19.21bi |
|- ( ( ph /\ x e. ( ( C Func D ) X. ( Base ` C ) ) ) -> ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) ) |
163 |
3
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> C e. Cat ) |
164 |
4
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> D e. Cat ) |
165 |
|
simp21 |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> x e. ( ( C Func D ) X. ( Base ` C ) ) ) |
166 |
|
1st2nd2 |
|- ( x e. ( ( C Func D ) X. ( Base ` C ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
167 |
165 166
|
syl |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
168 |
167 165
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( C Func D ) X. ( Base ` C ) ) ) |
169 |
|
opelxp |
|- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( C Func D ) X. ( Base ` C ) ) <-> ( ( 1st ` x ) e. ( C Func D ) /\ ( 2nd ` x ) e. ( Base ` C ) ) ) |
170 |
168 169
|
sylib |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` x ) e. ( C Func D ) /\ ( 2nd ` x ) e. ( Base ` C ) ) ) |
171 |
|
simp22 |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> y e. ( ( C Func D ) X. ( Base ` C ) ) ) |
172 |
|
1st2nd2 |
|- ( y e. ( ( C Func D ) X. ( Base ` C ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
173 |
171 172
|
syl |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
174 |
173 171
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( ( C Func D ) X. ( Base ` C ) ) ) |
175 |
|
opelxp |
|- ( <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( ( C Func D ) X. ( Base ` C ) ) <-> ( ( 1st ` y ) e. ( C Func D ) /\ ( 2nd ` y ) e. ( Base ` C ) ) ) |
176 |
174 175
|
sylib |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` y ) e. ( C Func D ) /\ ( 2nd ` y ) e. ( Base ` C ) ) ) |
177 |
|
simp23 |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> z e. ( ( C Func D ) X. ( Base ` C ) ) ) |
178 |
|
1st2nd2 |
|- ( z e. ( ( C Func D ) X. ( Base ` C ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
179 |
177 178
|
syl |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
180 |
179 177
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( ( C Func D ) X. ( Base ` C ) ) ) |
181 |
|
opelxp |
|- ( <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( ( C Func D ) X. ( Base ` C ) ) <-> ( ( 1st ` z ) e. ( C Func D ) /\ ( 2nd ` z ) e. ( Base ` C ) ) ) |
182 |
180 181
|
sylib |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` z ) e. ( C Func D ) /\ ( 2nd ` z ) e. ( Base ` C ) ) ) |
183 |
|
simp3l |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> f e. ( x ( Hom ` ( Q Xc. C ) ) y ) ) |
184 |
19 21 91 6 23 165 171
|
xpchom |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( x ( Hom ` ( Q Xc. C ) ) y ) = ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
185 |
183 184
|
eleqtrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> f e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
186 |
|
1st2nd2 |
|- ( f e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
187 |
185 186
|
syl |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
188 |
187 185
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` f ) , ( 2nd ` f ) >. e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
189 |
|
opelxp |
|- ( <. ( 1st ` f ) , ( 2nd ` f ) >. e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) <-> ( ( 1st ` f ) e. ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) /\ ( 2nd ` f ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
190 |
188 189
|
sylib |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` f ) e. ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) /\ ( 2nd ` f ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
191 |
|
simp3r |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) |
192 |
19 21 91 6 23 171 177
|
xpchom |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( y ( Hom ` ( Q Xc. C ) ) z ) = ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
193 |
191 192
|
eleqtrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> g e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
194 |
|
1st2nd2 |
|- ( g e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
195 |
193 194
|
syl |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
196 |
195 193
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` g ) , ( 2nd ` g ) >. e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
197 |
|
opelxp |
|- ( <. ( 1st ` g ) , ( 2nd ` g ) >. e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) <-> ( ( 1st ` g ) e. ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) /\ ( 2nd ` g ) e. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
198 |
196 197
|
sylib |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` g ) e. ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) /\ ( 2nd ` g ) e. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
199 |
1 2 163 164 8 170 176 182 190 198
|
evlfcllem |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) = ( ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ( <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) ) |
200 |
167 179
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( x ( 2nd ` E ) z ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
201 |
167 173
|
opeq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. x , y >. = <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ) |
202 |
201 179
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) = ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
203 |
202 195 187
|
oveq123d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) f ) = ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
204 |
200 203
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` E ) z ) ` ( g ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) f ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) ) |
205 |
167
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` E ) ` x ) = ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
206 |
173
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` E ) ` y ) = ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
207 |
205 206
|
opeq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. = <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ) |
208 |
179
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` E ) ` z ) = ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
209 |
207 208
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. ( comp ` D ) ( ( 1st ` E ) ` z ) ) = ( <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) ) |
210 |
173 179
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( y ( 2nd ` E ) z ) = ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
211 |
210 195
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( y ( 2nd ` E ) z ) ` g ) = ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
212 |
167 173
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( x ( 2nd ` E ) y ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
213 |
212 187
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` E ) y ) ` f ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
214 |
209 211 213
|
oveq123d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( ( y ( 2nd ` E ) z ) ` g ) ( <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. ( comp ` D ) ( ( 1st ` E ) ` z ) ) ( ( x ( 2nd ` E ) y ) ` f ) ) = ( ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ( <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) ) |
215 |
199 204 214
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` E ) z ) ` ( g ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) f ) ) = ( ( ( y ( 2nd ` E ) z ) ` g ) ( <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. ( comp ` D ) ( ( 1st ` E ) ` z ) ) ( ( x ( 2nd ` E ) y ) ` f ) ) ) |
216 |
21 22 23 24 25 26 27 7 29 4 44 55 121 162 215
|
isfuncd |
|- ( ph -> ( 1st ` E ) ( ( Q Xc. C ) Func D ) ( 2nd ` E ) ) |
217 |
|
df-br |
|- ( ( 1st ` E ) ( ( Q Xc. C ) Func D ) ( 2nd ` E ) <-> <. ( 1st ` E ) , ( 2nd ` E ) >. e. ( ( Q Xc. C ) Func D ) ) |
218 |
216 217
|
sylib |
|- ( ph -> <. ( 1st ` E ) , ( 2nd ` E ) >. e. ( ( Q Xc. C ) Func D ) ) |
219 |
18 218
|
eqeltrd |
|- ( ph -> E e. ( ( Q Xc. C ) Func D ) ) |