| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlfcl.e |
|- E = ( C evalF D ) |
| 2 |
|
evlfcl.q |
|- Q = ( C FuncCat D ) |
| 3 |
|
evlfcl.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
evlfcl.d |
|- ( ph -> D e. Cat ) |
| 5 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 6 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 7 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 8 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
| 9 |
1 3 4 5 6 7 8
|
evlfval |
|- ( ph -> E = <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. ) |
| 10 |
|
ovex |
|- ( C Func D ) e. _V |
| 11 |
|
fvex |
|- ( Base ` C ) e. _V |
| 12 |
10 11
|
mpoex |
|- ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) e. _V |
| 13 |
10 11
|
xpex |
|- ( ( C Func D ) X. ( Base ` C ) ) e. _V |
| 14 |
13 13
|
mpoex |
|- ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) e. _V |
| 15 |
12 14
|
opelvv |
|- <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. e. ( _V X. _V ) |
| 16 |
9 15
|
eqeltrdi |
|- ( ph -> E e. ( _V X. _V ) ) |
| 17 |
|
1st2nd2 |
|- ( E e. ( _V X. _V ) -> E = <. ( 1st ` E ) , ( 2nd ` E ) >. ) |
| 18 |
16 17
|
syl |
|- ( ph -> E = <. ( 1st ` E ) , ( 2nd ` E ) >. ) |
| 19 |
|
eqid |
|- ( Q Xc. C ) = ( Q Xc. C ) |
| 20 |
2
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
| 21 |
19 20 5
|
xpcbas |
|- ( ( C Func D ) X. ( Base ` C ) ) = ( Base ` ( Q Xc. C ) ) |
| 22 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 23 |
|
eqid |
|- ( Hom ` ( Q Xc. C ) ) = ( Hom ` ( Q Xc. C ) ) |
| 24 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 25 |
|
eqid |
|- ( Id ` ( Q Xc. C ) ) = ( Id ` ( Q Xc. C ) ) |
| 26 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 27 |
|
eqid |
|- ( comp ` ( Q Xc. C ) ) = ( comp ` ( Q Xc. C ) ) |
| 28 |
2 3 4
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 29 |
19 28 3
|
xpccat |
|- ( ph -> ( Q Xc. C ) e. Cat ) |
| 30 |
|
relfunc |
|- Rel ( C Func D ) |
| 31 |
|
simpr |
|- ( ( ph /\ f e. ( C Func D ) ) -> f e. ( C Func D ) ) |
| 32 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ f e. ( C Func D ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 33 |
30 31 32
|
sylancr |
|- ( ( ph /\ f e. ( C Func D ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 34 |
5 22 33
|
funcf1 |
|- ( ( ph /\ f e. ( C Func D ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
| 35 |
34
|
ffvelcdmda |
|- ( ( ( ph /\ f e. ( C Func D ) ) /\ x e. ( Base ` C ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` D ) ) |
| 36 |
35
|
ralrimiva |
|- ( ( ph /\ f e. ( C Func D ) ) -> A. x e. ( Base ` C ) ( ( 1st ` f ) ` x ) e. ( Base ` D ) ) |
| 37 |
36
|
ralrimiva |
|- ( ph -> A. f e. ( C Func D ) A. x e. ( Base ` C ) ( ( 1st ` f ) ` x ) e. ( Base ` D ) ) |
| 38 |
|
eqid |
|- ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) = ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) |
| 39 |
38
|
fmpo |
|- ( A. f e. ( C Func D ) A. x e. ( Base ` C ) ( ( 1st ` f ) ` x ) e. ( Base ` D ) <-> ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) |
| 40 |
37 39
|
sylib |
|- ( ph -> ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) |
| 41 |
12 14
|
op1std |
|- ( E = <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. -> ( 1st ` E ) = ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) ) |
| 42 |
9 41
|
syl |
|- ( ph -> ( 1st ` E ) = ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) ) |
| 43 |
42
|
feq1d |
|- ( ph -> ( ( 1st ` E ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) <-> ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) ) |
| 44 |
40 43
|
mpbird |
|- ( ph -> ( 1st ` E ) : ( ( C Func D ) X. ( Base ` C ) ) --> ( Base ` D ) ) |
| 45 |
|
eqid |
|- ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) = ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) |
| 46 |
|
ovex |
|- ( m ( C Nat D ) n ) e. _V |
| 47 |
|
ovex |
|- ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) e. _V |
| 48 |
46 47
|
mpoex |
|- ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) e. _V |
| 49 |
48
|
csbex |
|- [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) e. _V |
| 50 |
49
|
csbex |
|- [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) e. _V |
| 51 |
45 50
|
fnmpoi |
|- ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) |
| 52 |
12 14
|
op2ndd |
|- ( E = <. ( f e. ( C Func D ) , x e. ( Base ` C ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
| 53 |
9 52
|
syl |
|- ( ph -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
| 54 |
53
|
fneq1d |
|- ( ph -> ( ( 2nd ` E ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) <-> ( x e. ( ( C Func D ) X. ( Base ` C ) ) , y e. ( ( C Func D ) X. ( Base ` C ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( C Nat D ) n ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` D ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) ) ) |
| 55 |
51 54
|
mpbiri |
|- ( ph -> ( 2nd ` E ) Fn ( ( ( C Func D ) X. ( Base ` C ) ) X. ( ( C Func D ) X. ( Base ` C ) ) ) ) |
| 56 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> D e. Cat ) |
| 57 |
56
|
adantr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> D e. Cat ) |
| 58 |
|
simplrl |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> f e. ( C Func D ) ) |
| 59 |
30 58 32
|
sylancr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 60 |
5 22 59
|
funcf1 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
| 61 |
60
|
adantr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
| 62 |
|
simplrr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> u e. ( Base ` C ) ) |
| 63 |
62
|
adantr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> u e. ( Base ` C ) ) |
| 64 |
61 63
|
ffvelcdmd |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( 1st ` f ) ` u ) e. ( Base ` D ) ) |
| 65 |
|
simplrr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> v e. ( Base ` C ) ) |
| 66 |
61 65
|
ffvelcdmd |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( 1st ` f ) ` v ) e. ( Base ` D ) ) |
| 67 |
|
simprl |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> g e. ( C Func D ) ) |
| 68 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ g e. ( C Func D ) ) -> ( 1st ` g ) ( C Func D ) ( 2nd ` g ) ) |
| 69 |
30 67 68
|
sylancr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` g ) ( C Func D ) ( 2nd ` g ) ) |
| 70 |
5 22 69
|
funcf1 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( 1st ` g ) : ( Base ` C ) --> ( Base ` D ) ) |
| 71 |
70
|
adantr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( 1st ` g ) : ( Base ` C ) --> ( Base ` D ) ) |
| 72 |
71 65
|
ffvelcdmd |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( 1st ` g ) ` v ) e. ( Base ` D ) ) |
| 73 |
|
simprr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> v e. ( Base ` C ) ) |
| 74 |
5 6 24 59 62 73
|
funcf2 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( u ( 2nd ` f ) v ) : ( u ( Hom ` C ) v ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` v ) ) ) |
| 75 |
74
|
adantr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( u ( 2nd ` f ) v ) : ( u ( Hom ` C ) v ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` v ) ) ) |
| 76 |
|
simprr |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> h e. ( u ( Hom ` C ) v ) ) |
| 77 |
75 76
|
ffvelcdmd |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( u ( 2nd ` f ) v ) ` h ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` v ) ) ) |
| 78 |
|
simprl |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> a e. ( f ( C Nat D ) g ) ) |
| 79 |
8 78
|
nat1st2nd |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> a e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 80 |
8 79 5 24 65
|
natcl |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( a ` v ) e. ( ( ( 1st ` f ) ` v ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 81 |
22 24 7 57 64 66 72 77 80
|
catcocl |
|- ( ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) /\ ( a e. ( f ( C Nat D ) g ) /\ h e. ( u ( Hom ` C ) v ) ) ) -> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 82 |
81
|
ralrimivva |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> A. a e. ( f ( C Nat D ) g ) A. h e. ( u ( Hom ` C ) v ) ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 83 |
|
eqid |
|- ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) = ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) |
| 84 |
83
|
fmpo |
|- ( A. a e. ( f ( C Nat D ) g ) A. h e. ( u ( Hom ` C ) v ) ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) <-> ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 85 |
82 84
|
sylib |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 86 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> C e. Cat ) |
| 87 |
|
eqid |
|- ( <. f , u >. ( 2nd ` E ) <. g , v >. ) = ( <. f , u >. ( 2nd ` E ) <. g , v >. ) |
| 88 |
1 86 56 5 6 7 8 58 67 62 73 87
|
evlf2 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) = ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) ) |
| 89 |
88
|
feq1d |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) <-> ( a e. ( f ( C Nat D ) g ) , h e. ( u ( Hom ` C ) v ) |-> ( ( a ` v ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` v ) >. ( comp ` D ) ( ( 1st ` g ) ` v ) ) ( ( u ( 2nd ` f ) v ) ` h ) ) ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) ) |
| 90 |
85 89
|
mpbird |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 91 |
2 8
|
fuchom |
|- ( C Nat D ) = ( Hom ` Q ) |
| 92 |
19 20 5 91 6 58 62 67 73 23
|
xpchom2 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) = ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) ) |
| 93 |
1 86 56 5 58 62
|
evlf1 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( f ( 1st ` E ) u ) = ( ( 1st ` f ) ` u ) ) |
| 94 |
1 86 56 5 67 73
|
evlf1 |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( g ( 1st ` E ) v ) = ( ( 1st ` g ) ` v ) ) |
| 95 |
93 94
|
oveq12d |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) = ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) |
| 96 |
92 95
|
feq23d |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) <-> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( ( f ( C Nat D ) g ) X. ( u ( Hom ` C ) v ) ) --> ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` g ) ` v ) ) ) ) |
| 97 |
90 96
|
mpbird |
|- ( ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) /\ ( g e. ( C Func D ) /\ v e. ( Base ` C ) ) ) -> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 98 |
97
|
ralrimivva |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 99 |
98
|
ralrimivva |
|- ( ph -> A. f e. ( C Func D ) A. u e. ( Base ` C ) A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 100 |
|
oveq2 |
|- ( y = <. g , v >. -> ( x ( 2nd ` E ) y ) = ( x ( 2nd ` E ) <. g , v >. ) ) |
| 101 |
|
oveq2 |
|- ( y = <. g , v >. -> ( x ( Hom ` ( Q Xc. C ) ) y ) = ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) ) |
| 102 |
|
fveq2 |
|- ( y = <. g , v >. -> ( ( 1st ` E ) ` y ) = ( ( 1st ` E ) ` <. g , v >. ) ) |
| 103 |
|
df-ov |
|- ( g ( 1st ` E ) v ) = ( ( 1st ` E ) ` <. g , v >. ) |
| 104 |
102 103
|
eqtr4di |
|- ( y = <. g , v >. -> ( ( 1st ` E ) ` y ) = ( g ( 1st ` E ) v ) ) |
| 105 |
104
|
oveq2d |
|- ( y = <. g , v >. -> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) = ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 106 |
100 101 105
|
feq123d |
|- ( y = <. g , v >. -> ( ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
| 107 |
106
|
ralxp |
|- ( A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 108 |
|
oveq1 |
|- ( x = <. f , u >. -> ( x ( 2nd ` E ) <. g , v >. ) = ( <. f , u >. ( 2nd ` E ) <. g , v >. ) ) |
| 109 |
|
oveq1 |
|- ( x = <. f , u >. -> ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) = ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) ) |
| 110 |
|
fveq2 |
|- ( x = <. f , u >. -> ( ( 1st ` E ) ` x ) = ( ( 1st ` E ) ` <. f , u >. ) ) |
| 111 |
|
df-ov |
|- ( f ( 1st ` E ) u ) = ( ( 1st ` E ) ` <. f , u >. ) |
| 112 |
110 111
|
eqtr4di |
|- ( x = <. f , u >. -> ( ( 1st ` E ) ` x ) = ( f ( 1st ` E ) u ) ) |
| 113 |
112
|
oveq1d |
|- ( x = <. f , u >. -> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) = ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 114 |
108 109 113
|
feq123d |
|- ( x = <. f , u >. -> ( ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) <-> ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
| 115 |
114
|
2ralbidv |
|- ( x = <. f , u >. -> ( A. g e. ( C Func D ) A. v e. ( Base ` C ) ( x ( 2nd ` E ) <. g , v >. ) : ( x ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) <-> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
| 116 |
107 115
|
bitrid |
|- ( x = <. f , u >. -> ( A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) ) |
| 117 |
116
|
ralxp |
|- ( A. x e. ( ( C Func D ) X. ( Base ` C ) ) A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) <-> A. f e. ( C Func D ) A. u e. ( Base ` C ) A. g e. ( C Func D ) A. v e. ( Base ` C ) ( <. f , u >. ( 2nd ` E ) <. g , v >. ) : ( <. f , u >. ( Hom ` ( Q Xc. C ) ) <. g , v >. ) --> ( ( f ( 1st ` E ) u ) ( Hom ` D ) ( g ( 1st ` E ) v ) ) ) |
| 118 |
99 117
|
sylibr |
|- ( ph -> A. x e. ( ( C Func D ) X. ( Base ` C ) ) A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
| 119 |
118
|
r19.21bi |
|- ( ( ph /\ x e. ( ( C Func D ) X. ( Base ` C ) ) ) -> A. y e. ( ( C Func D ) X. ( Base ` C ) ) ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
| 120 |
119
|
r19.21bi |
|- ( ( ( ph /\ x e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) ) -> ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
| 121 |
120
|
anasss |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) ) ) -> ( x ( 2nd ` E ) y ) : ( x ( Hom ` ( Q Xc. C ) ) y ) --> ( ( ( 1st ` E ) ` x ) ( Hom ` D ) ( ( 1st ` E ) ` y ) ) ) |
| 122 |
28
|
adantr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> Q e. Cat ) |
| 123 |
3
|
adantr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> C e. Cat ) |
| 124 |
|
eqid |
|- ( Id ` Q ) = ( Id ` Q ) |
| 125 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 126 |
|
simprl |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> f e. ( C Func D ) ) |
| 127 |
|
simprr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> u e. ( Base ` C ) ) |
| 128 |
19 122 123 20 5 124 125 25 126 127
|
xpcid |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) = <. ( ( Id ` Q ) ` f ) , ( ( Id ` C ) ` u ) >. ) |
| 129 |
128
|
fveq2d |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` <. ( ( Id ` Q ) ` f ) , ( ( Id ` C ) ` u ) >. ) ) |
| 130 |
|
df-ov |
|- ( ( ( Id ` Q ) ` f ) ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ( ( Id ` C ) ` u ) ) = ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` <. ( ( Id ` Q ) ` f ) , ( ( Id ` C ) ` u ) >. ) |
| 131 |
129 130
|
eqtr4di |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( ( Id ` Q ) ` f ) ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ( ( Id ` C ) ` u ) ) ) |
| 132 |
4
|
adantr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> D e. Cat ) |
| 133 |
|
eqid |
|- ( <. f , u >. ( 2nd ` E ) <. f , u >. ) = ( <. f , u >. ( 2nd ` E ) <. f , u >. ) |
| 134 |
20 91 124 122 126
|
catidcl |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` Q ) ` f ) e. ( f ( C Nat D ) f ) ) |
| 135 |
5 6 125 123 127
|
catidcl |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` C ) ` u ) e. ( u ( Hom ` C ) u ) ) |
| 136 |
1 123 132 5 6 7 8 126 126 127 127 133 134 135
|
evlf2val |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` Q ) ` f ) ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ( ( Id ` C ) ` u ) ) = ( ( ( ( Id ` Q ) ` f ) ` u ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) ) ) |
| 137 |
30 126 32
|
sylancr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 138 |
5 22 137
|
funcf1 |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
| 139 |
138 127
|
ffvelcdmd |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( 1st ` f ) ` u ) e. ( Base ` D ) ) |
| 140 |
22 24 26 132 139
|
catidcl |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) e. ( ( ( 1st ` f ) ` u ) ( Hom ` D ) ( ( 1st ` f ) ` u ) ) ) |
| 141 |
22 24 26 132 139 7 139 140
|
catlid |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
| 142 |
2 124 26 126
|
fucid |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` Q ) ` f ) = ( ( Id ` D ) o. ( 1st ` f ) ) ) |
| 143 |
142
|
fveq1d |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` Q ) ` f ) ` u ) = ( ( ( Id ` D ) o. ( 1st ` f ) ) ` u ) ) |
| 144 |
|
fvco3 |
|- ( ( ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) /\ u e. ( Base ` C ) ) -> ( ( ( Id ` D ) o. ( 1st ` f ) ) ` u ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
| 145 |
138 127 144
|
syl2anc |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` D ) o. ( 1st ` f ) ) ` u ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
| 146 |
143 145
|
eqtrd |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( Id ` Q ) ` f ) ` u ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
| 147 |
5 125 26 137 127
|
funcid |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
| 148 |
146 147
|
oveq12d |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( ( Id ` Q ) ` f ) ` u ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) ) = ( ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) ) |
| 149 |
1 123 132 5 126 127
|
evlf1 |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( f ( 1st ` E ) u ) = ( ( 1st ` f ) ` u ) ) |
| 150 |
149
|
fveq2d |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) = ( ( Id ` D ) ` ( ( 1st ` f ) ` u ) ) ) |
| 151 |
141 148 150
|
3eqtr4d |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( ( ( Id ` Q ) ` f ) ` u ) ( <. ( ( 1st ` f ) ` u ) , ( ( 1st ` f ) ` u ) >. ( comp ` D ) ( ( 1st ` f ) ` u ) ) ( ( u ( 2nd ` f ) u ) ` ( ( Id ` C ) ` u ) ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
| 152 |
131 136 151
|
3eqtrd |
|- ( ( ph /\ ( f e. ( C Func D ) /\ u e. ( Base ` C ) ) ) -> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
| 153 |
152
|
ralrimivva |
|- ( ph -> A. f e. ( C Func D ) A. u e. ( Base ` C ) ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
| 154 |
|
id |
|- ( x = <. f , u >. -> x = <. f , u >. ) |
| 155 |
154 154
|
oveq12d |
|- ( x = <. f , u >. -> ( x ( 2nd ` E ) x ) = ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ) |
| 156 |
|
fveq2 |
|- ( x = <. f , u >. -> ( ( Id ` ( Q Xc. C ) ) ` x ) = ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) |
| 157 |
155 156
|
fveq12d |
|- ( x = <. f , u >. -> ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) ) |
| 158 |
112
|
fveq2d |
|- ( x = <. f , u >. -> ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
| 159 |
157 158
|
eqeq12d |
|- ( x = <. f , u >. -> ( ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) <-> ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) ) |
| 160 |
159
|
ralxp |
|- ( A. x e. ( ( C Func D ) X. ( Base ` C ) ) ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) <-> A. f e. ( C Func D ) A. u e. ( Base ` C ) ( ( <. f , u >. ( 2nd ` E ) <. f , u >. ) ` ( ( Id ` ( Q Xc. C ) ) ` <. f , u >. ) ) = ( ( Id ` D ) ` ( f ( 1st ` E ) u ) ) ) |
| 161 |
153 160
|
sylibr |
|- ( ph -> A. x e. ( ( C Func D ) X. ( Base ` C ) ) ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) ) |
| 162 |
161
|
r19.21bi |
|- ( ( ph /\ x e. ( ( C Func D ) X. ( Base ` C ) ) ) -> ( ( x ( 2nd ` E ) x ) ` ( ( Id ` ( Q Xc. C ) ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` E ) ` x ) ) ) |
| 163 |
3
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> C e. Cat ) |
| 164 |
4
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> D e. Cat ) |
| 165 |
|
simp21 |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> x e. ( ( C Func D ) X. ( Base ` C ) ) ) |
| 166 |
|
1st2nd2 |
|- ( x e. ( ( C Func D ) X. ( Base ` C ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 167 |
165 166
|
syl |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 168 |
167 165
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( C Func D ) X. ( Base ` C ) ) ) |
| 169 |
|
opelxp |
|- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( ( C Func D ) X. ( Base ` C ) ) <-> ( ( 1st ` x ) e. ( C Func D ) /\ ( 2nd ` x ) e. ( Base ` C ) ) ) |
| 170 |
168 169
|
sylib |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` x ) e. ( C Func D ) /\ ( 2nd ` x ) e. ( Base ` C ) ) ) |
| 171 |
|
simp22 |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> y e. ( ( C Func D ) X. ( Base ` C ) ) ) |
| 172 |
|
1st2nd2 |
|- ( y e. ( ( C Func D ) X. ( Base ` C ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 173 |
171 172
|
syl |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 174 |
173 171
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( ( C Func D ) X. ( Base ` C ) ) ) |
| 175 |
|
opelxp |
|- ( <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( ( C Func D ) X. ( Base ` C ) ) <-> ( ( 1st ` y ) e. ( C Func D ) /\ ( 2nd ` y ) e. ( Base ` C ) ) ) |
| 176 |
174 175
|
sylib |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` y ) e. ( C Func D ) /\ ( 2nd ` y ) e. ( Base ` C ) ) ) |
| 177 |
|
simp23 |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> z e. ( ( C Func D ) X. ( Base ` C ) ) ) |
| 178 |
|
1st2nd2 |
|- ( z e. ( ( C Func D ) X. ( Base ` C ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 179 |
177 178
|
syl |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 180 |
179 177
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( ( C Func D ) X. ( Base ` C ) ) ) |
| 181 |
|
opelxp |
|- ( <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( ( C Func D ) X. ( Base ` C ) ) <-> ( ( 1st ` z ) e. ( C Func D ) /\ ( 2nd ` z ) e. ( Base ` C ) ) ) |
| 182 |
180 181
|
sylib |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` z ) e. ( C Func D ) /\ ( 2nd ` z ) e. ( Base ` C ) ) ) |
| 183 |
|
simp3l |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> f e. ( x ( Hom ` ( Q Xc. C ) ) y ) ) |
| 184 |
19 21 91 6 23 165 171
|
xpchom |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( x ( Hom ` ( Q Xc. C ) ) y ) = ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 185 |
183 184
|
eleqtrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> f e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 186 |
|
1st2nd2 |
|- ( f e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 187 |
185 186
|
syl |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 188 |
187 185
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` f ) , ( 2nd ` f ) >. e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 189 |
|
opelxp |
|- ( <. ( 1st ` f ) , ( 2nd ` f ) >. e. ( ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) <-> ( ( 1st ` f ) e. ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) /\ ( 2nd ` f ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 190 |
188 189
|
sylib |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` f ) e. ( ( 1st ` x ) ( C Nat D ) ( 1st ` y ) ) /\ ( 2nd ` f ) e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) ) ) |
| 191 |
|
simp3r |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) |
| 192 |
19 21 91 6 23 171 177
|
xpchom |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( y ( Hom ` ( Q Xc. C ) ) z ) = ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 193 |
191 192
|
eleqtrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> g e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 194 |
|
1st2nd2 |
|- ( g e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 195 |
193 194
|
syl |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 196 |
195 193
|
eqeltrrd |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( 1st ` g ) , ( 2nd ` g ) >. e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 197 |
|
opelxp |
|- ( <. ( 1st ` g ) , ( 2nd ` g ) >. e. ( ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) X. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) <-> ( ( 1st ` g ) e. ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) /\ ( 2nd ` g ) e. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 198 |
196 197
|
sylib |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` g ) e. ( ( 1st ` y ) ( C Nat D ) ( 1st ` z ) ) /\ ( 2nd ` g ) e. ( ( 2nd ` y ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
| 199 |
1 2 163 164 8 170 176 182 190 198
|
evlfcllem |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) = ( ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ( <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) ) |
| 200 |
167 179
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( x ( 2nd ` E ) z ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 201 |
167 173
|
opeq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. x , y >. = <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ) |
| 202 |
201 179
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) = ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 203 |
202 195 187
|
oveq123d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) f ) = ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
| 204 |
200 203
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` E ) z ) ` ( g ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) f ) ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( <. <. ( 1st ` x ) , ( 2nd ` x ) >. , <. ( 1st ` y ) , ( 2nd ` y ) >. >. ( comp ` ( Q Xc. C ) ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) ) |
| 205 |
167
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` E ) ` x ) = ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 206 |
173
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` E ) ` y ) = ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 207 |
205 206
|
opeq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. = <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ) |
| 208 |
179
|
fveq2d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( 1st ` E ) ` z ) = ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 209 |
207 208
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. ( comp ` D ) ( ( 1st ` E ) ` z ) ) = ( <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) ) |
| 210 |
173 179
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( y ( 2nd ` E ) z ) = ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 211 |
210 195
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( y ( 2nd ` E ) z ) ` g ) = ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 212 |
167 173
|
oveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( x ( 2nd ` E ) y ) = ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 213 |
212 187
|
fveq12d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` E ) y ) ` f ) = ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) |
| 214 |
209 211 213
|
oveq123d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( ( y ( 2nd ` E ) z ) ` g ) ( <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. ( comp ` D ) ( ( 1st ` E ) ` z ) ) ( ( x ( 2nd ` E ) y ) ` f ) ) = ( ( ( <. ( 1st ` y ) , ( 2nd ` y ) >. ( 2nd ` E ) <. ( 1st ` z ) , ( 2nd ` z ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ( <. ( ( 1st ` E ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) , ( ( 1st ` E ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) >. ( comp ` D ) ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) ( ( <. ( 1st ` x ) , ( 2nd ` x ) >. ( 2nd ` E ) <. ( 1st ` y ) , ( 2nd ` y ) >. ) ` <. ( 1st ` f ) , ( 2nd ` f ) >. ) ) ) |
| 215 |
199 204 214
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( ( C Func D ) X. ( Base ` C ) ) /\ y e. ( ( C Func D ) X. ( Base ` C ) ) /\ z e. ( ( C Func D ) X. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` ( Q Xc. C ) ) y ) /\ g e. ( y ( Hom ` ( Q Xc. C ) ) z ) ) ) -> ( ( x ( 2nd ` E ) z ) ` ( g ( <. x , y >. ( comp ` ( Q Xc. C ) ) z ) f ) ) = ( ( ( y ( 2nd ` E ) z ) ` g ) ( <. ( ( 1st ` E ) ` x ) , ( ( 1st ` E ) ` y ) >. ( comp ` D ) ( ( 1st ` E ) ` z ) ) ( ( x ( 2nd ` E ) y ) ` f ) ) ) |
| 216 |
21 22 23 24 25 26 27 7 29 4 44 55 121 162 215
|
isfuncd |
|- ( ph -> ( 1st ` E ) ( ( Q Xc. C ) Func D ) ( 2nd ` E ) ) |
| 217 |
|
df-br |
|- ( ( 1st ` E ) ( ( Q Xc. C ) Func D ) ( 2nd ` E ) <-> <. ( 1st ` E ) , ( 2nd ` E ) >. e. ( ( Q Xc. C ) Func D ) ) |
| 218 |
216 217
|
sylib |
|- ( ph -> <. ( 1st ` E ) , ( 2nd ` E ) >. e. ( ( Q Xc. C ) Func D ) ) |
| 219 |
18 218
|
eqeltrd |
|- ( ph -> E e. ( ( Q Xc. C ) Func D ) ) |