Step |
Hyp |
Ref |
Expression |
1 |
|
evlfval.e |
|- E = ( C evalF D ) |
2 |
|
evlfval.c |
|- ( ph -> C e. Cat ) |
3 |
|
evlfval.d |
|- ( ph -> D e. Cat ) |
4 |
|
evlfval.b |
|- B = ( Base ` C ) |
5 |
|
evlfval.h |
|- H = ( Hom ` C ) |
6 |
|
evlfval.o |
|- .x. = ( comp ` D ) |
7 |
|
evlfval.n |
|- N = ( C Nat D ) |
8 |
|
evlf2.f |
|- ( ph -> F e. ( C Func D ) ) |
9 |
|
evlf2.g |
|- ( ph -> G e. ( C Func D ) ) |
10 |
|
evlf2.x |
|- ( ph -> X e. B ) |
11 |
|
evlf2.y |
|- ( ph -> Y e. B ) |
12 |
|
evlf2.l |
|- L = ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) |
13 |
1 2 3 4 5 6 7
|
evlfval |
|- ( ph -> E = <. ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. ) |
14 |
|
ovex |
|- ( C Func D ) e. _V |
15 |
4
|
fvexi |
|- B e. _V |
16 |
14 15
|
mpoex |
|- ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) e. _V |
17 |
14 15
|
xpex |
|- ( ( C Func D ) X. B ) e. _V |
18 |
17 17
|
mpoex |
|- ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) e. _V |
19 |
16 18
|
op2ndd |
|- ( E = <. ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
20 |
13 19
|
syl |
|- ( ph -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
21 |
|
fvexd |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` x ) e. _V ) |
22 |
|
simprl |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> x = <. F , X >. ) |
23 |
22
|
fveq2d |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` x ) = ( 1st ` <. F , X >. ) ) |
24 |
|
op1stg |
|- ( ( F e. ( C Func D ) /\ X e. B ) -> ( 1st ` <. F , X >. ) = F ) |
25 |
8 10 24
|
syl2anc |
|- ( ph -> ( 1st ` <. F , X >. ) = F ) |
26 |
25
|
adantr |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` <. F , X >. ) = F ) |
27 |
23 26
|
eqtrd |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` x ) = F ) |
28 |
|
fvexd |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` y ) e. _V ) |
29 |
|
simplrr |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> y = <. G , Y >. ) |
30 |
29
|
fveq2d |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` y ) = ( 1st ` <. G , Y >. ) ) |
31 |
|
op1stg |
|- ( ( G e. ( C Func D ) /\ Y e. B ) -> ( 1st ` <. G , Y >. ) = G ) |
32 |
9 11 31
|
syl2anc |
|- ( ph -> ( 1st ` <. G , Y >. ) = G ) |
33 |
32
|
ad2antrr |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` <. G , Y >. ) = G ) |
34 |
30 33
|
eqtrd |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` y ) = G ) |
35 |
|
simplr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> m = F ) |
36 |
|
simpr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> n = G ) |
37 |
35 36
|
oveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( m N n ) = ( F N G ) ) |
38 |
22
|
ad2antrr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> x = <. F , X >. ) |
39 |
38
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` x ) = ( 2nd ` <. F , X >. ) ) |
40 |
|
op2ndg |
|- ( ( F e. ( C Func D ) /\ X e. B ) -> ( 2nd ` <. F , X >. ) = X ) |
41 |
8 10 40
|
syl2anc |
|- ( ph -> ( 2nd ` <. F , X >. ) = X ) |
42 |
41
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` <. F , X >. ) = X ) |
43 |
39 42
|
eqtrd |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` x ) = X ) |
44 |
29
|
adantr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> y = <. G , Y >. ) |
45 |
44
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` y ) = ( 2nd ` <. G , Y >. ) ) |
46 |
|
op2ndg |
|- ( ( G e. ( C Func D ) /\ Y e. B ) -> ( 2nd ` <. G , Y >. ) = Y ) |
47 |
9 11 46
|
syl2anc |
|- ( ph -> ( 2nd ` <. G , Y >. ) = Y ) |
48 |
47
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` <. G , Y >. ) = Y ) |
49 |
45 48
|
eqtrd |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` y ) = Y ) |
50 |
43 49
|
oveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 2nd ` x ) H ( 2nd ` y ) ) = ( X H Y ) ) |
51 |
35
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 1st ` m ) = ( 1st ` F ) ) |
52 |
51 43
|
fveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 1st ` m ) ` ( 2nd ` x ) ) = ( ( 1st ` F ) ` X ) ) |
53 |
51 49
|
fveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 1st ` m ) ` ( 2nd ` y ) ) = ( ( 1st ` F ) ` Y ) ) |
54 |
52 53
|
opeq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. = <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ) |
55 |
36
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 1st ` n ) = ( 1st ` G ) ) |
56 |
55 49
|
fveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 1st ` n ) ` ( 2nd ` y ) ) = ( ( 1st ` G ) ` Y ) ) |
57 |
54 56
|
oveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) = ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ) |
58 |
49
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( a ` ( 2nd ` y ) ) = ( a ` Y ) ) |
59 |
35
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` m ) = ( 2nd ` F ) ) |
60 |
59 43 49
|
oveq123d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) = ( X ( 2nd ` F ) Y ) ) |
61 |
60
|
fveq1d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) = ( ( X ( 2nd ` F ) Y ) ` g ) ) |
62 |
57 58 61
|
oveq123d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) = ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) |
63 |
37 50 62
|
mpoeq123dv |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
64 |
28 34 63
|
csbied2 |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
65 |
21 27 64
|
csbied2 |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
66 |
8 10
|
opelxpd |
|- ( ph -> <. F , X >. e. ( ( C Func D ) X. B ) ) |
67 |
9 11
|
opelxpd |
|- ( ph -> <. G , Y >. e. ( ( C Func D ) X. B ) ) |
68 |
|
ovex |
|- ( F N G ) e. _V |
69 |
|
ovex |
|- ( X H Y ) e. _V |
70 |
68 69
|
mpoex |
|- ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) e. _V |
71 |
70
|
a1i |
|- ( ph -> ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) e. _V ) |
72 |
20 65 66 67 71
|
ovmpod |
|- ( ph -> ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
73 |
12 72
|
eqtrid |
|- ( ph -> L = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |