| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlfval.e |
|- E = ( C evalF D ) |
| 2 |
|
evlfval.c |
|- ( ph -> C e. Cat ) |
| 3 |
|
evlfval.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
evlfval.b |
|- B = ( Base ` C ) |
| 5 |
|
evlfval.h |
|- H = ( Hom ` C ) |
| 6 |
|
evlfval.o |
|- .x. = ( comp ` D ) |
| 7 |
|
evlfval.n |
|- N = ( C Nat D ) |
| 8 |
|
evlf2.f |
|- ( ph -> F e. ( C Func D ) ) |
| 9 |
|
evlf2.g |
|- ( ph -> G e. ( C Func D ) ) |
| 10 |
|
evlf2.x |
|- ( ph -> X e. B ) |
| 11 |
|
evlf2.y |
|- ( ph -> Y e. B ) |
| 12 |
|
evlf2.l |
|- L = ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) |
| 13 |
1 2 3 4 5 6 7
|
evlfval |
|- ( ph -> E = <. ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. ) |
| 14 |
|
ovex |
|- ( C Func D ) e. _V |
| 15 |
4
|
fvexi |
|- B e. _V |
| 16 |
14 15
|
mpoex |
|- ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) e. _V |
| 17 |
14 15
|
xpex |
|- ( ( C Func D ) X. B ) e. _V |
| 18 |
17 17
|
mpoex |
|- ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) e. _V |
| 19 |
16 18
|
op2ndd |
|- ( E = <. ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
| 20 |
13 19
|
syl |
|- ( ph -> ( 2nd ` E ) = ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
| 21 |
|
fvexd |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` x ) e. _V ) |
| 22 |
|
simprl |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> x = <. F , X >. ) |
| 23 |
22
|
fveq2d |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` x ) = ( 1st ` <. F , X >. ) ) |
| 24 |
|
op1stg |
|- ( ( F e. ( C Func D ) /\ X e. B ) -> ( 1st ` <. F , X >. ) = F ) |
| 25 |
8 10 24
|
syl2anc |
|- ( ph -> ( 1st ` <. F , X >. ) = F ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` <. F , X >. ) = F ) |
| 27 |
23 26
|
eqtrd |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> ( 1st ` x ) = F ) |
| 28 |
|
fvexd |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` y ) e. _V ) |
| 29 |
|
simplrr |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> y = <. G , Y >. ) |
| 30 |
29
|
fveq2d |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` y ) = ( 1st ` <. G , Y >. ) ) |
| 31 |
|
op1stg |
|- ( ( G e. ( C Func D ) /\ Y e. B ) -> ( 1st ` <. G , Y >. ) = G ) |
| 32 |
9 11 31
|
syl2anc |
|- ( ph -> ( 1st ` <. G , Y >. ) = G ) |
| 33 |
32
|
ad2antrr |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` <. G , Y >. ) = G ) |
| 34 |
30 33
|
eqtrd |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> ( 1st ` y ) = G ) |
| 35 |
|
simplr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> m = F ) |
| 36 |
|
simpr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> n = G ) |
| 37 |
35 36
|
oveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( m N n ) = ( F N G ) ) |
| 38 |
22
|
ad2antrr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> x = <. F , X >. ) |
| 39 |
38
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` x ) = ( 2nd ` <. F , X >. ) ) |
| 40 |
|
op2ndg |
|- ( ( F e. ( C Func D ) /\ X e. B ) -> ( 2nd ` <. F , X >. ) = X ) |
| 41 |
8 10 40
|
syl2anc |
|- ( ph -> ( 2nd ` <. F , X >. ) = X ) |
| 42 |
41
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` <. F , X >. ) = X ) |
| 43 |
39 42
|
eqtrd |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` x ) = X ) |
| 44 |
29
|
adantr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> y = <. G , Y >. ) |
| 45 |
44
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` y ) = ( 2nd ` <. G , Y >. ) ) |
| 46 |
|
op2ndg |
|- ( ( G e. ( C Func D ) /\ Y e. B ) -> ( 2nd ` <. G , Y >. ) = Y ) |
| 47 |
9 11 46
|
syl2anc |
|- ( ph -> ( 2nd ` <. G , Y >. ) = Y ) |
| 48 |
47
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` <. G , Y >. ) = Y ) |
| 49 |
45 48
|
eqtrd |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` y ) = Y ) |
| 50 |
43 49
|
oveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 2nd ` x ) H ( 2nd ` y ) ) = ( X H Y ) ) |
| 51 |
35
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 1st ` m ) = ( 1st ` F ) ) |
| 52 |
51 43
|
fveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 1st ` m ) ` ( 2nd ` x ) ) = ( ( 1st ` F ) ` X ) ) |
| 53 |
51 49
|
fveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 1st ` m ) ` ( 2nd ` y ) ) = ( ( 1st ` F ) ` Y ) ) |
| 54 |
52 53
|
opeq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. = <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. ) |
| 55 |
36
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 1st ` n ) = ( 1st ` G ) ) |
| 56 |
55 49
|
fveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 1st ` n ) ` ( 2nd ` y ) ) = ( ( 1st ` G ) ` Y ) ) |
| 57 |
54 56
|
oveq12d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) = ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ) |
| 58 |
49
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( a ` ( 2nd ` y ) ) = ( a ` Y ) ) |
| 59 |
35
|
fveq2d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( 2nd ` m ) = ( 2nd ` F ) ) |
| 60 |
59 43 49
|
oveq123d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) = ( X ( 2nd ` F ) Y ) ) |
| 61 |
60
|
fveq1d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) = ( ( X ( 2nd ` F ) Y ) ` g ) ) |
| 62 |
57 58 61
|
oveq123d |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) = ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) |
| 63 |
37 50 62
|
mpoeq123dv |
|- ( ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) /\ n = G ) -> ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
| 64 |
28 34 63
|
csbied2 |
|- ( ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) /\ m = F ) -> [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
| 65 |
21 27 64
|
csbied2 |
|- ( ( ph /\ ( x = <. F , X >. /\ y = <. G , Y >. ) ) -> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
| 66 |
8 10
|
opelxpd |
|- ( ph -> <. F , X >. e. ( ( C Func D ) X. B ) ) |
| 67 |
9 11
|
opelxpd |
|- ( ph -> <. G , Y >. e. ( ( C Func D ) X. B ) ) |
| 68 |
|
ovex |
|- ( F N G ) e. _V |
| 69 |
|
ovex |
|- ( X H Y ) e. _V |
| 70 |
68 69
|
mpoex |
|- ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) e. _V |
| 71 |
70
|
a1i |
|- ( ph -> ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) e. _V ) |
| 72 |
20 65 66 67 71
|
ovmpod |
|- ( ph -> ( <. F , X >. ( 2nd ` E ) <. G , Y >. ) = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |
| 73 |
12 72
|
eqtrid |
|- ( ph -> L = ( a e. ( F N G ) , g e. ( X H Y ) |-> ( ( a ` Y ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` Y ) >. .x. ( ( 1st ` G ) ` Y ) ) ( ( X ( 2nd ` F ) Y ) ` g ) ) ) ) |