Metamath Proof Explorer


Theorem evlf2

Description: Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfval.e E = C eval F D
evlfval.c φ C Cat
evlfval.d φ D Cat
evlfval.b B = Base C
evlfval.h H = Hom C
evlfval.o · ˙ = comp D
evlfval.n N = C Nat D
evlf2.f φ F C Func D
evlf2.g φ G C Func D
evlf2.x φ X B
evlf2.y φ Y B
evlf2.l L = F X 2 nd E G Y
Assertion evlf2 φ L = a F N G , g X H Y a Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y g

Proof

Step Hyp Ref Expression
1 evlfval.e E = C eval F D
2 evlfval.c φ C Cat
3 evlfval.d φ D Cat
4 evlfval.b B = Base C
5 evlfval.h H = Hom C
6 evlfval.o · ˙ = comp D
7 evlfval.n N = C Nat D
8 evlf2.f φ F C Func D
9 evlf2.g φ G C Func D
10 evlf2.x φ X B
11 evlf2.y φ Y B
12 evlf2.l L = F X 2 nd E G Y
13 1 2 3 4 5 6 7 evlfval φ E = f C Func D , x B 1 st f x x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
14 ovex C Func D V
15 4 fvexi B V
16 14 15 mpoex f C Func D , x B 1 st f x V
17 14 15 xpex C Func D × B V
18 17 17 mpoex x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g V
19 16 18 op2ndd E = f C Func D , x B 1 st f x x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g 2 nd E = x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
20 13 19 syl φ 2 nd E = x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
21 fvexd φ x = F X y = G Y 1 st x V
22 simprl φ x = F X y = G Y x = F X
23 22 fveq2d φ x = F X y = G Y 1 st x = 1 st F X
24 op1stg F C Func D X B 1 st F X = F
25 8 10 24 syl2anc φ 1 st F X = F
26 25 adantr φ x = F X y = G Y 1 st F X = F
27 23 26 eqtrd φ x = F X y = G Y 1 st x = F
28 fvexd φ x = F X y = G Y m = F 1 st y V
29 simplrr φ x = F X y = G Y m = F y = G Y
30 29 fveq2d φ x = F X y = G Y m = F 1 st y = 1 st G Y
31 op1stg G C Func D Y B 1 st G Y = G
32 9 11 31 syl2anc φ 1 st G Y = G
33 32 ad2antrr φ x = F X y = G Y m = F 1 st G Y = G
34 30 33 eqtrd φ x = F X y = G Y m = F 1 st y = G
35 simplr φ x = F X y = G Y m = F n = G m = F
36 simpr φ x = F X y = G Y m = F n = G n = G
37 35 36 oveq12d φ x = F X y = G Y m = F n = G m N n = F N G
38 22 ad2antrr φ x = F X y = G Y m = F n = G x = F X
39 38 fveq2d φ x = F X y = G Y m = F n = G 2 nd x = 2 nd F X
40 op2ndg F C Func D X B 2 nd F X = X
41 8 10 40 syl2anc φ 2 nd F X = X
42 41 ad3antrrr φ x = F X y = G Y m = F n = G 2 nd F X = X
43 39 42 eqtrd φ x = F X y = G Y m = F n = G 2 nd x = X
44 29 adantr φ x = F X y = G Y m = F n = G y = G Y
45 44 fveq2d φ x = F X y = G Y m = F n = G 2 nd y = 2 nd G Y
46 op2ndg G C Func D Y B 2 nd G Y = Y
47 9 11 46 syl2anc φ 2 nd G Y = Y
48 47 ad3antrrr φ x = F X y = G Y m = F n = G 2 nd G Y = Y
49 45 48 eqtrd φ x = F X y = G Y m = F n = G 2 nd y = Y
50 43 49 oveq12d φ x = F X y = G Y m = F n = G 2 nd x H 2 nd y = X H Y
51 35 fveq2d φ x = F X y = G Y m = F n = G 1 st m = 1 st F
52 51 43 fveq12d φ x = F X y = G Y m = F n = G 1 st m 2 nd x = 1 st F X
53 51 49 fveq12d φ x = F X y = G Y m = F n = G 1 st m 2 nd y = 1 st F Y
54 52 53 opeq12d φ x = F X y = G Y m = F n = G 1 st m 2 nd x 1 st m 2 nd y = 1 st F X 1 st F Y
55 36 fveq2d φ x = F X y = G Y m = F n = G 1 st n = 1 st G
56 55 49 fveq12d φ x = F X y = G Y m = F n = G 1 st n 2 nd y = 1 st G Y
57 54 56 oveq12d φ x = F X y = G Y m = F n = G 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y = 1 st F X 1 st F Y · ˙ 1 st G Y
58 49 fveq2d φ x = F X y = G Y m = F n = G a 2 nd y = a Y
59 35 fveq2d φ x = F X y = G Y m = F n = G 2 nd m = 2 nd F
60 59 43 49 oveq123d φ x = F X y = G Y m = F n = G 2 nd x 2 nd m 2 nd y = X 2 nd F Y
61 60 fveq1d φ x = F X y = G Y m = F n = G 2 nd x 2 nd m 2 nd y g = X 2 nd F Y g
62 57 58 61 oveq123d φ x = F X y = G Y m = F n = G a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g = a Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y g
63 37 50 62 mpoeq123dv φ x = F X y = G Y m = F n = G a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g = a F N G , g X H Y a Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y g
64 28 34 63 csbied2 φ x = F X y = G Y m = F 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g = a F N G , g X H Y a Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y g
65 21 27 64 csbied2 φ x = F X y = G Y 1 st x / m 1 st y / n a m N n , g 2 nd x H 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y · ˙ 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g = a F N G , g X H Y a Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y g
66 8 10 opelxpd φ F X C Func D × B
67 9 11 opelxpd φ G Y C Func D × B
68 ovex F N G V
69 ovex X H Y V
70 68 69 mpoex a F N G , g X H Y a Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y g V
71 70 a1i φ a F N G , g X H Y a Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y g V
72 20 65 66 67 71 ovmpod φ F X 2 nd E G Y = a F N G , g X H Y a Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y g
73 12 72 syl5eq φ L = a F N G , g X H Y a Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y g