| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlfval.e |
|
| 2 |
|
evlfval.c |
|
| 3 |
|
evlfval.d |
|
| 4 |
|
evlfval.b |
|
| 5 |
|
evlfval.h |
|
| 6 |
|
evlfval.o |
|
| 7 |
|
evlfval.n |
|
| 8 |
|
evlf2.f |
|
| 9 |
|
evlf2.g |
|
| 10 |
|
evlf2.x |
|
| 11 |
|
evlf2.y |
|
| 12 |
|
evlf2.l |
|
| 13 |
1 2 3 4 5 6 7
|
evlfval |
|
| 14 |
|
ovex |
|
| 15 |
4
|
fvexi |
|
| 16 |
14 15
|
mpoex |
|
| 17 |
14 15
|
xpex |
|
| 18 |
17 17
|
mpoex |
|
| 19 |
16 18
|
op2ndd |
|
| 20 |
13 19
|
syl |
|
| 21 |
|
fvexd |
|
| 22 |
|
simprl |
|
| 23 |
22
|
fveq2d |
|
| 24 |
|
op1stg |
|
| 25 |
8 10 24
|
syl2anc |
|
| 26 |
25
|
adantr |
|
| 27 |
23 26
|
eqtrd |
|
| 28 |
|
fvexd |
|
| 29 |
|
simplrr |
|
| 30 |
29
|
fveq2d |
|
| 31 |
|
op1stg |
|
| 32 |
9 11 31
|
syl2anc |
|
| 33 |
32
|
ad2antrr |
|
| 34 |
30 33
|
eqtrd |
|
| 35 |
|
simplr |
|
| 36 |
|
simpr |
|
| 37 |
35 36
|
oveq12d |
|
| 38 |
22
|
ad2antrr |
|
| 39 |
38
|
fveq2d |
|
| 40 |
|
op2ndg |
|
| 41 |
8 10 40
|
syl2anc |
|
| 42 |
41
|
ad3antrrr |
|
| 43 |
39 42
|
eqtrd |
|
| 44 |
29
|
adantr |
|
| 45 |
44
|
fveq2d |
|
| 46 |
|
op2ndg |
|
| 47 |
9 11 46
|
syl2anc |
|
| 48 |
47
|
ad3antrrr |
|
| 49 |
45 48
|
eqtrd |
|
| 50 |
43 49
|
oveq12d |
|
| 51 |
35
|
fveq2d |
|
| 52 |
51 43
|
fveq12d |
|
| 53 |
51 49
|
fveq12d |
|
| 54 |
52 53
|
opeq12d |
|
| 55 |
36
|
fveq2d |
|
| 56 |
55 49
|
fveq12d |
|
| 57 |
54 56
|
oveq12d |
|
| 58 |
49
|
fveq2d |
|
| 59 |
35
|
fveq2d |
|
| 60 |
59 43 49
|
oveq123d |
|
| 61 |
60
|
fveq1d |
|
| 62 |
57 58 61
|
oveq123d |
|
| 63 |
37 50 62
|
mpoeq123dv |
|
| 64 |
28 34 63
|
csbied2 |
|
| 65 |
21 27 64
|
csbied2 |
|
| 66 |
8 10
|
opelxpd |
|
| 67 |
9 11
|
opelxpd |
|
| 68 |
|
ovex |
|
| 69 |
|
ovex |
|
| 70 |
68 69
|
mpoex |
|
| 71 |
70
|
a1i |
|
| 72 |
20 65 66 67 71
|
ovmpod |
|
| 73 |
12 72
|
eqtrid |
|