Step |
Hyp |
Ref |
Expression |
1 |
|
evlfval.e |
|
2 |
|
evlfval.c |
|
3 |
|
evlfval.d |
|
4 |
|
evlfval.b |
|
5 |
|
evlfval.h |
|
6 |
|
evlfval.o |
|
7 |
|
evlfval.n |
|
8 |
|
evlf2.f |
|
9 |
|
evlf2.g |
|
10 |
|
evlf2.x |
|
11 |
|
evlf2.y |
|
12 |
|
evlf2.l |
|
13 |
1 2 3 4 5 6 7
|
evlfval |
|
14 |
|
ovex |
|
15 |
4
|
fvexi |
|
16 |
14 15
|
mpoex |
|
17 |
14 15
|
xpex |
|
18 |
17 17
|
mpoex |
|
19 |
16 18
|
op2ndd |
|
20 |
13 19
|
syl |
|
21 |
|
fvexd |
|
22 |
|
simprl |
|
23 |
22
|
fveq2d |
|
24 |
|
op1stg |
|
25 |
8 10 24
|
syl2anc |
|
26 |
25
|
adantr |
|
27 |
23 26
|
eqtrd |
|
28 |
|
fvexd |
|
29 |
|
simplrr |
|
30 |
29
|
fveq2d |
|
31 |
|
op1stg |
|
32 |
9 11 31
|
syl2anc |
|
33 |
32
|
ad2antrr |
|
34 |
30 33
|
eqtrd |
|
35 |
|
simplr |
|
36 |
|
simpr |
|
37 |
35 36
|
oveq12d |
|
38 |
22
|
ad2antrr |
|
39 |
38
|
fveq2d |
|
40 |
|
op2ndg |
|
41 |
8 10 40
|
syl2anc |
|
42 |
41
|
ad3antrrr |
|
43 |
39 42
|
eqtrd |
|
44 |
29
|
adantr |
|
45 |
44
|
fveq2d |
|
46 |
|
op2ndg |
|
47 |
9 11 46
|
syl2anc |
|
48 |
47
|
ad3antrrr |
|
49 |
45 48
|
eqtrd |
|
50 |
43 49
|
oveq12d |
|
51 |
35
|
fveq2d |
|
52 |
51 43
|
fveq12d |
|
53 |
51 49
|
fveq12d |
|
54 |
52 53
|
opeq12d |
|
55 |
36
|
fveq2d |
|
56 |
55 49
|
fveq12d |
|
57 |
54 56
|
oveq12d |
|
58 |
49
|
fveq2d |
|
59 |
35
|
fveq2d |
|
60 |
59 43 49
|
oveq123d |
|
61 |
60
|
fveq1d |
|
62 |
57 58 61
|
oveq123d |
|
63 |
37 50 62
|
mpoeq123dv |
|
64 |
28 34 63
|
csbied2 |
|
65 |
21 27 64
|
csbied2 |
|
66 |
8 10
|
opelxpd |
|
67 |
9 11
|
opelxpd |
|
68 |
|
ovex |
|
69 |
|
ovex |
|
70 |
68 69
|
mpoex |
|
71 |
70
|
a1i |
|
72 |
20 65 66 67 71
|
ovmpod |
|
73 |
12 72
|
eqtrid |
|