Metamath Proof Explorer


Definition df-nat

Description: Definition of a natural transformation between two functors. A natural transformation A : F --> G is a collection of arrows A ( x ) : F ( x ) --> G ( x ) , such that A ( y ) o. F ( h ) = G ( h ) o. A ( x ) for each morphism h : x --> y . Definition 6.1 in Adamek p. 83, and definition in Lang p. 65. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion df-nat Nat=tCat,uCatftFuncu,gtFuncu1stf/r1stg/saxBasetrxHomusx|xBasetyBasethxHomtyayrxrycompusyx2ndfyh=x2ndgyhrxsxcompusyax

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnat classNat
1 vt setvart
2 ccat classCat
3 vu setvaru
4 vf setvarf
5 1 cv setvart
6 cfunc classFunc
7 3 cv setvaru
8 5 7 6 co classtFuncu
9 vg setvarg
10 c1st class1st
11 4 cv setvarf
12 11 10 cfv class1stf
13 vr setvarr
14 9 cv setvarg
15 14 10 cfv class1stg
16 vs setvars
17 va setvara
18 vx setvarx
19 cbs classBase
20 5 19 cfv classBaset
21 13 cv setvarr
22 18 cv setvarx
23 22 21 cfv classrx
24 chom classHom
25 7 24 cfv classHomu
26 16 cv setvars
27 22 26 cfv classsx
28 23 27 25 co classrxHomusx
29 18 20 28 cixp classxBasetrxHomusx
30 vy setvary
31 vh setvarh
32 5 24 cfv classHomt
33 30 cv setvary
34 22 33 32 co classxHomty
35 17 cv setvara
36 33 35 cfv classay
37 33 21 cfv classry
38 23 37 cop classrxry
39 cco classcomp
40 7 39 cfv classcompu
41 33 26 cfv classsy
42 38 41 40 co classrxrycompusy
43 c2nd class2nd
44 11 43 cfv class2ndf
45 22 33 44 co classx2ndfy
46 31 cv setvarh
47 46 45 cfv classx2ndfyh
48 36 47 42 co classayrxrycompusyx2ndfyh
49 14 43 cfv class2ndg
50 22 33 49 co classx2ndgy
51 46 50 cfv classx2ndgyh
52 23 27 cop classrxsx
53 52 41 40 co classrxsxcompusy
54 22 35 cfv classax
55 51 54 53 co classx2ndgyhrxsxcompusyax
56 48 55 wceq wffayrxrycompusyx2ndfyh=x2ndgyhrxsxcompusyax
57 56 31 34 wral wffhxHomtyayrxrycompusyx2ndfyh=x2ndgyhrxsxcompusyax
58 57 30 20 wral wffyBasethxHomtyayrxrycompusyx2ndfyh=x2ndgyhrxsxcompusyax
59 58 18 20 wral wffxBasetyBasethxHomtyayrxrycompusyx2ndfyh=x2ndgyhrxsxcompusyax
60 59 17 29 crab classaxBasetrxHomusx|xBasetyBasethxHomtyayrxrycompusyx2ndfyh=x2ndgyhrxsxcompusyax
61 16 15 60 csb class1stg/saxBasetrxHomusx|xBasetyBasethxHomtyayrxrycompusyx2ndfyh=x2ndgyhrxsxcompusyax
62 13 12 61 csb class1stf/r1stg/saxBasetrxHomusx|xBasetyBasethxHomtyayrxrycompusyx2ndfyh=x2ndgyhrxsxcompusyax
63 4 9 8 8 62 cmpo classftFuncu,gtFuncu1stf/r1stg/saxBasetrxHomusx|xBasetyBasethxHomtyayrxrycompusyx2ndfyh=x2ndgyhrxsxcompusyax
64 1 3 2 2 63 cmpo classtCat,uCatftFuncu,gtFuncu1stf/r1stg/saxBasetrxHomusx|xBasetyBasethxHomtyayrxrycompusyx2ndfyh=x2ndgyhrxsxcompusyax
65 0 64 wceq wffNat=tCat,uCatftFuncu,gtFuncu1stf/r1stg/saxBasetrxHomusx|xBasetyBasethxHomtyayrxrycompusyx2ndfyh=x2ndgyhrxsxcompusyax