Description: Definition of a natural transformation between two functors. A natural transformation A : F --> G is a collection of arrows A ( x ) : F ( x ) --> G ( x ) , such that A ( y ) o. F ( h ) = G ( h ) o. A ( x ) for each morphism h : x --> y . Definition 6.1 in Adamek p. 83, and definition in Lang p. 65. (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-nat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnat | |
|
1 | vt | |
|
2 | ccat | |
|
3 | vu | |
|
4 | vf | |
|
5 | 1 | cv | |
6 | cfunc | |
|
7 | 3 | cv | |
8 | 5 7 6 | co | |
9 | vg | |
|
10 | c1st | |
|
11 | 4 | cv | |
12 | 11 10 | cfv | |
13 | vr | |
|
14 | 9 | cv | |
15 | 14 10 | cfv | |
16 | vs | |
|
17 | va | |
|
18 | vx | |
|
19 | cbs | |
|
20 | 5 19 | cfv | |
21 | 13 | cv | |
22 | 18 | cv | |
23 | 22 21 | cfv | |
24 | chom | |
|
25 | 7 24 | cfv | |
26 | 16 | cv | |
27 | 22 26 | cfv | |
28 | 23 27 25 | co | |
29 | 18 20 28 | cixp | |
30 | vy | |
|
31 | vh | |
|
32 | 5 24 | cfv | |
33 | 30 | cv | |
34 | 22 33 32 | co | |
35 | 17 | cv | |
36 | 33 35 | cfv | |
37 | 33 21 | cfv | |
38 | 23 37 | cop | |
39 | cco | |
|
40 | 7 39 | cfv | |
41 | 33 26 | cfv | |
42 | 38 41 40 | co | |
43 | c2nd | |
|
44 | 11 43 | cfv | |
45 | 22 33 44 | co | |
46 | 31 | cv | |
47 | 46 45 | cfv | |
48 | 36 47 42 | co | |
49 | 14 43 | cfv | |
50 | 22 33 49 | co | |
51 | 46 50 | cfv | |
52 | 23 27 | cop | |
53 | 52 41 40 | co | |
54 | 22 35 | cfv | |
55 | 51 54 53 | co | |
56 | 48 55 | wceq | |
57 | 56 31 34 | wral | |
58 | 57 30 20 | wral | |
59 | 58 18 20 | wral | |
60 | 59 17 29 | crab | |
61 | 16 15 60 | csb | |
62 | 13 12 61 | csb | |
63 | 4 9 8 8 62 | cmpo | |
64 | 1 3 2 2 63 | cmpo | |
65 | 0 64 | wceq | |