Metamath Proof Explorer


Definition df-fuc

Description: Definition of the category of functors between two fixed categories, with the objects being functors and the morphisms being natural transformations. Definition 6.15 in Adamek p. 87. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion df-fuc FuncCat=tCat,uCatBasendxtFuncuHomndxtNatucompndxvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfuc classFuncCat
1 vt setvart
2 ccat classCat
3 vu setvaru
4 cbs classBase
5 cnx classndx
6 5 4 cfv classBasendx
7 1 cv setvart
8 cfunc classFunc
9 3 cv setvaru
10 7 9 8 co classtFuncu
11 6 10 cop classBasendxtFuncu
12 chom classHom
13 5 12 cfv classHomndx
14 cnat classNat
15 7 9 14 co classtNatu
16 13 15 cop classHomndxtNatu
17 cco classcomp
18 5 17 cfv classcompndx
19 vv setvarv
20 10 10 cxp classtFuncu×tFuncu
21 vh setvarh
22 c1st class1st
23 19 cv setvarv
24 23 22 cfv class1stv
25 vf setvarf
26 c2nd class2nd
27 23 26 cfv class2ndv
28 vg setvarg
29 vb setvarb
30 28 cv setvarg
31 21 cv setvarh
32 30 31 15 co classgtNatuh
33 va setvara
34 25 cv setvarf
35 34 30 15 co classftNatug
36 vx setvarx
37 7 4 cfv classBaset
38 29 cv setvarb
39 36 cv setvarx
40 39 38 cfv classbx
41 34 22 cfv class1stf
42 39 41 cfv class1stfx
43 30 22 cfv class1stg
44 39 43 cfv class1stgx
45 42 44 cop class1stfx1stgx
46 9 17 cfv classcompu
47 31 22 cfv class1sth
48 39 47 cfv class1sthx
49 45 48 46 co class1stfx1stgxcompu1sthx
50 33 cv setvara
51 39 50 cfv classax
52 40 51 49 co classbx1stfx1stgxcompu1sthxax
53 36 37 52 cmpt classxBasetbx1stfx1stgxcompu1sthxax
54 29 33 32 35 53 cmpo classbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax
55 28 27 54 csb class2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax
56 25 24 55 csb class1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax
57 19 21 20 10 56 cmpo classvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax
58 18 57 cop classcompndxvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax
59 11 16 58 ctp classBasendxtFuncuHomndxtNatucompndxvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax
60 1 3 2 2 59 cmpo classtCat,uCatBasendxtFuncuHomndxtNatucompndxvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax
61 0 60 wceq wffFuncCat=tCat,uCatBasendxtFuncuHomndxtNatucompndxvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax