Description: Definition of the category of functors between two fixed categories, with the objects being functors and the morphisms being natural transformations. Definition 6.15 in Adamek p. 87. (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-fuc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfuc | |
|
1 | vt | |
|
2 | ccat | |
|
3 | vu | |
|
4 | cbs | |
|
5 | cnx | |
|
6 | 5 4 | cfv | |
7 | 1 | cv | |
8 | cfunc | |
|
9 | 3 | cv | |
10 | 7 9 8 | co | |
11 | 6 10 | cop | |
12 | chom | |
|
13 | 5 12 | cfv | |
14 | cnat | |
|
15 | 7 9 14 | co | |
16 | 13 15 | cop | |
17 | cco | |
|
18 | 5 17 | cfv | |
19 | vv | |
|
20 | 10 10 | cxp | |
21 | vh | |
|
22 | c1st | |
|
23 | 19 | cv | |
24 | 23 22 | cfv | |
25 | vf | |
|
26 | c2nd | |
|
27 | 23 26 | cfv | |
28 | vg | |
|
29 | vb | |
|
30 | 28 | cv | |
31 | 21 | cv | |
32 | 30 31 15 | co | |
33 | va | |
|
34 | 25 | cv | |
35 | 34 30 15 | co | |
36 | vx | |
|
37 | 7 4 | cfv | |
38 | 29 | cv | |
39 | 36 | cv | |
40 | 39 38 | cfv | |
41 | 34 22 | cfv | |
42 | 39 41 | cfv | |
43 | 30 22 | cfv | |
44 | 39 43 | cfv | |
45 | 42 44 | cop | |
46 | 9 17 | cfv | |
47 | 31 22 | cfv | |
48 | 39 47 | cfv | |
49 | 45 48 46 | co | |
50 | 33 | cv | |
51 | 39 50 | cfv | |
52 | 40 51 49 | co | |
53 | 36 37 52 | cmpt | |
54 | 29 33 32 35 53 | cmpo | |
55 | 28 27 54 | csb | |
56 | 25 24 55 | csb | |
57 | 19 21 20 10 56 | cmpo | |
58 | 18 57 | cop | |
59 | 11 16 58 | ctp | |
60 | 1 3 2 2 59 | cmpo | |
61 | 0 60 | wceq | |