Metamath Proof Explorer


Theorem evlf2val

Description: Value of the evaluation natural transformation at an object. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfval.e E = C eval F D
evlfval.c φ C Cat
evlfval.d φ D Cat
evlfval.b B = Base C
evlfval.h H = Hom C
evlfval.o · ˙ = comp D
evlfval.n N = C Nat D
evlf2.f φ F C Func D
evlf2.g φ G C Func D
evlf2.x φ X B
evlf2.y φ Y B
evlf2.l L = F X 2 nd E G Y
evlf2val.a φ A F N G
evlf2val.k φ K X H Y
Assertion evlf2val φ A L K = A Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y K

Proof

Step Hyp Ref Expression
1 evlfval.e E = C eval F D
2 evlfval.c φ C Cat
3 evlfval.d φ D Cat
4 evlfval.b B = Base C
5 evlfval.h H = Hom C
6 evlfval.o · ˙ = comp D
7 evlfval.n N = C Nat D
8 evlf2.f φ F C Func D
9 evlf2.g φ G C Func D
10 evlf2.x φ X B
11 evlf2.y φ Y B
12 evlf2.l L = F X 2 nd E G Y
13 evlf2val.a φ A F N G
14 evlf2val.k φ K X H Y
15 1 2 3 4 5 6 7 8 9 10 11 12 evlf2 φ L = a F N G , g X H Y a Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y g
16 simprl φ a = A g = K a = A
17 16 fveq1d φ a = A g = K a Y = A Y
18 simprr φ a = A g = K g = K
19 18 fveq2d φ a = A g = K X 2 nd F Y g = X 2 nd F Y K
20 17 19 oveq12d φ a = A g = K a Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y g = A Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y K
21 ovexd φ A Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y K V
22 15 20 13 14 21 ovmpod φ A L K = A Y 1 st F X 1 st F Y · ˙ 1 st G Y X 2 nd F Y K