Metamath Proof Explorer


Theorem evlf2val

Description: Value of the evaluation natural transformation at an object. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfval.e E=CevalFD
evlfval.c φCCat
evlfval.d φDCat
evlfval.b B=BaseC
evlfval.h H=HomC
evlfval.o ·˙=compD
evlfval.n N=CNatD
evlf2.f φFCFuncD
evlf2.g φGCFuncD
evlf2.x φXB
evlf2.y φYB
evlf2.l L=FX2ndEGY
evlf2val.a φAFNG
evlf2val.k φKXHY
Assertion evlf2val φALK=AY1stFX1stFY·˙1stGYX2ndFYK

Proof

Step Hyp Ref Expression
1 evlfval.e E=CevalFD
2 evlfval.c φCCat
3 evlfval.d φDCat
4 evlfval.b B=BaseC
5 evlfval.h H=HomC
6 evlfval.o ·˙=compD
7 evlfval.n N=CNatD
8 evlf2.f φFCFuncD
9 evlf2.g φGCFuncD
10 evlf2.x φXB
11 evlf2.y φYB
12 evlf2.l L=FX2ndEGY
13 evlf2val.a φAFNG
14 evlf2val.k φKXHY
15 1 2 3 4 5 6 7 8 9 10 11 12 evlf2 φL=aFNG,gXHYaY1stFX1stFY·˙1stGYX2ndFYg
16 simprl φa=Ag=Ka=A
17 16 fveq1d φa=Ag=KaY=AY
18 simprr φa=Ag=Kg=K
19 18 fveq2d φa=Ag=KX2ndFYg=X2ndFYK
20 17 19 oveq12d φa=Ag=KaY1stFX1stFY·˙1stGYX2ndFYg=AY1stFX1stFY·˙1stGYX2ndFYK
21 ovexd φAY1stFX1stFY·˙1stGYX2ndFYKV
22 15 20 13 14 21 ovmpod φALK=AY1stFX1stFY·˙1stGYX2ndFYK