Metamath Proof Explorer


Theorem evlf1

Description: Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlf1.e E = C eval F D
evlf1.c φ C Cat
evlf1.d φ D Cat
evlf1.b B = Base C
evlf1.f φ F C Func D
evlf1.x φ X B
Assertion evlf1 φ F 1 st E X = 1 st F X

Proof

Step Hyp Ref Expression
1 evlf1.e E = C eval F D
2 evlf1.c φ C Cat
3 evlf1.d φ D Cat
4 evlf1.b B = Base C
5 evlf1.f φ F C Func D
6 evlf1.x φ X B
7 eqid Hom C = Hom C
8 eqid comp D = comp D
9 eqid C Nat D = C Nat D
10 1 2 3 4 7 8 9 evlfval φ E = f C Func D , x B 1 st f x x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g
11 ovex C Func D V
12 4 fvexi B V
13 11 12 mpoex f C Func D , x B 1 st f x V
14 11 12 xpex C Func D × B V
15 14 14 mpoex x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g V
16 13 15 op1std E = f C Func D , x B 1 st f x x C Func D × B , y C Func D × B 1 st x / m 1 st y / n a m C Nat D n , g 2 nd x Hom C 2 nd y a 2 nd y 1 st m 2 nd x 1 st m 2 nd y comp D 1 st n 2 nd y 2 nd x 2 nd m 2 nd y g 1 st E = f C Func D , x B 1 st f x
17 10 16 syl φ 1 st E = f C Func D , x B 1 st f x
18 simprl φ f = F x = X f = F
19 18 fveq2d φ f = F x = X 1 st f = 1 st F
20 simprr φ f = F x = X x = X
21 19 20 fveq12d φ f = F x = X 1 st f x = 1 st F X
22 fvexd φ 1 st F X V
23 17 21 5 6 22 ovmpod φ F 1 st E X = 1 st F X