Step |
Hyp |
Ref |
Expression |
1 |
|
evlfval.e |
|- E = ( C evalF D ) |
2 |
|
evlfval.c |
|- ( ph -> C e. Cat ) |
3 |
|
evlfval.d |
|- ( ph -> D e. Cat ) |
4 |
|
evlfval.b |
|- B = ( Base ` C ) |
5 |
|
evlfval.h |
|- H = ( Hom ` C ) |
6 |
|
evlfval.o |
|- .x. = ( comp ` D ) |
7 |
|
evlfval.n |
|- N = ( C Nat D ) |
8 |
|
df-evlf |
|- evalF = ( c e. Cat , d e. Cat |-> <. ( f e. ( c Func d ) , x e. ( Base ` c ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( c Func d ) X. ( Base ` c ) ) , y e. ( ( c Func d ) X. ( Base ` c ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( c Nat d ) n ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` d ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. ) |
9 |
8
|
a1i |
|- ( ph -> evalF = ( c e. Cat , d e. Cat |-> <. ( f e. ( c Func d ) , x e. ( Base ` c ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( c Func d ) X. ( Base ` c ) ) , y e. ( ( c Func d ) X. ( Base ` c ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( c Nat d ) n ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` d ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. ) ) |
10 |
|
simprl |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> c = C ) |
11 |
|
simprr |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> d = D ) |
12 |
10 11
|
oveq12d |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( c Func d ) = ( C Func D ) ) |
13 |
10
|
fveq2d |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( Base ` c ) = ( Base ` C ) ) |
14 |
13 4
|
eqtr4di |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( Base ` c ) = B ) |
15 |
|
eqidd |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( ( 1st ` f ) ` x ) = ( ( 1st ` f ) ` x ) ) |
16 |
12 14 15
|
mpoeq123dv |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( f e. ( c Func d ) , x e. ( Base ` c ) |-> ( ( 1st ` f ) ` x ) ) = ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) ) |
17 |
12 14
|
xpeq12d |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( ( c Func d ) X. ( Base ` c ) ) = ( ( C Func D ) X. B ) ) |
18 |
10 11
|
oveq12d |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( c Nat d ) = ( C Nat D ) ) |
19 |
18 7
|
eqtr4di |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( c Nat d ) = N ) |
20 |
19
|
oveqd |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( m ( c Nat d ) n ) = ( m N n ) ) |
21 |
10
|
fveq2d |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( Hom ` c ) = ( Hom ` C ) ) |
22 |
21 5
|
eqtr4di |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( Hom ` c ) = H ) |
23 |
22
|
oveqd |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) = ( ( 2nd ` x ) H ( 2nd ` y ) ) ) |
24 |
11
|
fveq2d |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( comp ` d ) = ( comp ` D ) ) |
25 |
24 6
|
eqtr4di |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( comp ` d ) = .x. ) |
26 |
25
|
oveqd |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` d ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) = ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ) |
27 |
26
|
oveqd |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` d ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) = ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) |
28 |
20 23 27
|
mpoeq123dv |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( a e. ( m ( c Nat d ) n ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` d ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) |
29 |
28
|
csbeq2dv |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> [_ ( 1st ` y ) / n ]_ ( a e. ( m ( c Nat d ) n ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` d ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) |
30 |
29
|
csbeq2dv |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( c Nat d ) n ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` d ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) = [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) |
31 |
17 17 30
|
mpoeq123dv |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( x e. ( ( c Func d ) X. ( Base ` c ) ) , y e. ( ( c Func d ) X. ( Base ` c ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( c Nat d ) n ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` d ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) = ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) ) |
32 |
16 31
|
opeq12d |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> <. ( f e. ( c Func d ) , x e. ( Base ` c ) |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( c Func d ) X. ( Base ` c ) ) , y e. ( ( c Func d ) X. ( Base ` c ) ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m ( c Nat d ) n ) , g e. ( ( 2nd ` x ) ( Hom ` c ) ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. ( comp ` d ) ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. = <. ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. ) |
33 |
|
opex |
|- <. ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. e. _V |
34 |
33
|
a1i |
|- ( ph -> <. ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. e. _V ) |
35 |
9 32 2 3 34
|
ovmpod |
|- ( ph -> ( C evalF D ) = <. ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. ) |
36 |
1 35
|
eqtrid |
|- ( ph -> E = <. ( f e. ( C Func D ) , x e. B |-> ( ( 1st ` f ) ` x ) ) , ( x e. ( ( C Func D ) X. B ) , y e. ( ( C Func D ) X. B ) |-> [_ ( 1st ` x ) / m ]_ [_ ( 1st ` y ) / n ]_ ( a e. ( m N n ) , g e. ( ( 2nd ` x ) H ( 2nd ` y ) ) |-> ( ( a ` ( 2nd ` y ) ) ( <. ( ( 1st ` m ) ` ( 2nd ` x ) ) , ( ( 1st ` m ) ` ( 2nd ` y ) ) >. .x. ( ( 1st ` n ) ` ( 2nd ` y ) ) ) ( ( ( 2nd ` x ) ( 2nd ` m ) ( 2nd ` y ) ) ` g ) ) ) ) >. ) |