Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004) (Revised by Mario Carneiro, 29-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralxp.1 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
|
Assertion | ralxp | |- ( A. x e. ( A X. B ) ph <-> A. y e. A A. z e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxp.1 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
|
2 | iunxpconst | |- U_ y e. A ( { y } X. B ) = ( A X. B ) |
|
3 | 2 | raleqi | |- ( A. x e. U_ y e. A ( { y } X. B ) ph <-> A. x e. ( A X. B ) ph ) |
4 | 1 | raliunxp | |- ( A. x e. U_ y e. A ( { y } X. B ) ph <-> A. y e. A A. z e. B ps ) |
5 | 3 4 | bitr3i | |- ( A. x e. ( A X. B ) ph <-> A. y e. A A. z e. B ps ) |