Metamath Proof Explorer


Theorem ralxp

Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypothesis ralxp.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
Assertion ralxp ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∀ 𝑦𝐴𝑧𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 ralxp.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
2 iunxpconst 𝑦𝐴 ( { 𝑦 } × 𝐵 ) = ( 𝐴 × 𝐵 )
3 2 raleqi ( ∀ 𝑥 𝑦𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 )
4 1 raliunxp ( ∀ 𝑥 𝑦𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∀ 𝑦𝐴𝑧𝐵 𝜓 )
5 3 4 bitr3i ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) 𝜑 ↔ ∀ 𝑦𝐴𝑧𝐵 𝜓 )