Metamath Proof Explorer


Theorem ralxp

Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypothesis ralxp.1 x=yzφψ
Assertion ralxp xA×BφyAzBψ

Proof

Step Hyp Ref Expression
1 ralxp.1 x=yzφψ
2 iunxpconst yAy×B=A×B
3 2 raleqi xyAy×BφxA×Bφ
4 1 raliunxp xyAy×BφyAzBψ
5 3 4 bitr3i xA×BφyAzBψ