Step |
Hyp |
Ref |
Expression |
1 |
|
ralxp.1 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
eliunxp |
⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ) |
3 |
2
|
imbi1i |
⊢ ( ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) → 𝜑 ) ↔ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ) |
4 |
|
19.23vv |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ) |
5 |
3 4
|
bitr4i |
⊢ ( ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ) |
7 |
|
alrot3 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ) |
8 |
|
impexp |
⊢ ( ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜑 ) ) ) |
9 |
8
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜑 ) ) ) |
10 |
|
opex |
⊢ 〈 𝑦 , 𝑧 〉 ∈ V |
11 |
1
|
imbi2d |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) ) |
12 |
10 11
|
ceqsalv |
⊢ ( ∀ 𝑥 ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜑 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) |
13 |
9 12
|
bitri |
⊢ ( ∀ 𝑥 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) |
14 |
13
|
2albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) |
15 |
7 14
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) |
16 |
6 15
|
bitri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) |
17 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) → 𝜑 ) ) |
18 |
|
r2al |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝜓 ) ) |
19 |
16 17 18
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( { 𝑦 } × 𝐵 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 𝜓 ) |