| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralxp.1 | ⊢ ( 𝑥  =  〈 𝑦 ,  𝑧 〉  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 | 1 | notbid | ⊢ ( 𝑥  =  〈 𝑦 ,  𝑧 〉  →  ( ¬  𝜑  ↔  ¬  𝜓 ) ) | 
						
							| 3 | 2 | raliunxp | ⊢ ( ∀ 𝑥  ∈  ∪  𝑦  ∈  𝐴 ( { 𝑦 }  ×  𝐵 ) ¬  𝜑  ↔  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ¬  𝜓 ) | 
						
							| 4 |  | ralnex | ⊢ ( ∀ 𝑧  ∈  𝐵 ¬  𝜓  ↔  ¬  ∃ 𝑧  ∈  𝐵 𝜓 ) | 
						
							| 5 | 4 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐵 ¬  𝜓  ↔  ∀ 𝑦  ∈  𝐴 ¬  ∃ 𝑧  ∈  𝐵 𝜓 ) | 
						
							| 6 | 3 5 | bitri | ⊢ ( ∀ 𝑥  ∈  ∪  𝑦  ∈  𝐴 ( { 𝑦 }  ×  𝐵 ) ¬  𝜑  ↔  ∀ 𝑦  ∈  𝐴 ¬  ∃ 𝑧  ∈  𝐵 𝜓 ) | 
						
							| 7 | 6 | notbii | ⊢ ( ¬  ∀ 𝑥  ∈  ∪  𝑦  ∈  𝐴 ( { 𝑦 }  ×  𝐵 ) ¬  𝜑  ↔  ¬  ∀ 𝑦  ∈  𝐴 ¬  ∃ 𝑧  ∈  𝐵 𝜓 ) | 
						
							| 8 |  | dfrex2 | ⊢ ( ∃ 𝑥  ∈  ∪  𝑦  ∈  𝐴 ( { 𝑦 }  ×  𝐵 ) 𝜑  ↔  ¬  ∀ 𝑥  ∈  ∪  𝑦  ∈  𝐴 ( { 𝑦 }  ×  𝐵 ) ¬  𝜑 ) | 
						
							| 9 |  | dfrex2 | ⊢ ( ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝜓  ↔  ¬  ∀ 𝑦  ∈  𝐴 ¬  ∃ 𝑧  ∈  𝐵 𝜓 ) | 
						
							| 10 | 7 8 9 | 3bitr4i | ⊢ ( ∃ 𝑥  ∈  ∪  𝑦  ∈  𝐴 ( { 𝑦 }  ×  𝐵 ) 𝜑  ↔  ∃ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝜓 ) |