| Step |
Hyp |
Ref |
Expression |
| 1 |
|
natrcl.1 |
|- N = ( C Nat D ) |
| 2 |
|
nat1st2nd.2 |
|- ( ph -> A e. ( F N G ) ) |
| 3 |
|
relfunc |
|- Rel ( C Func D ) |
| 4 |
1
|
natrcl |
|- ( A e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 5 |
2 4
|
syl |
|- ( ph -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 6 |
5
|
simpld |
|- ( ph -> F e. ( C Func D ) ) |
| 7 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 8 |
3 6 7
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 9 |
5
|
simprd |
|- ( ph -> G e. ( C Func D ) ) |
| 10 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 11 |
3 9 10
|
sylancr |
|- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 12 |
8 11
|
oveq12d |
|- ( ph -> ( F N G ) = ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 13 |
2 12
|
eleqtrd |
|- ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |