Metamath Proof Explorer


Theorem evlfcl

Description: The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors C --> D , and the second parameter in D . (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfcl.e 𝐸 = ( 𝐶 evalF 𝐷 )
evlfcl.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
evlfcl.c ( 𝜑𝐶 ∈ Cat )
evlfcl.d ( 𝜑𝐷 ∈ Cat )
Assertion evlfcl ( 𝜑𝐸 ∈ ( ( 𝑄 ×c 𝐶 ) Func 𝐷 ) )

Proof

Step Hyp Ref Expression
1 evlfcl.e 𝐸 = ( 𝐶 evalF 𝐷 )
2 evlfcl.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
3 evlfcl.c ( 𝜑𝐶 ∈ Cat )
4 evlfcl.d ( 𝜑𝐷 ∈ Cat )
5 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
6 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
7 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
8 eqid ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 )
9 1 3 4 5 6 7 8 evlfval ( 𝜑𝐸 = ⟨ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↦ ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ) ⟩ )
10 ovex ( 𝐶 Func 𝐷 ) ∈ V
11 fvex ( Base ‘ 𝐶 ) ∈ V
12 10 11 mpoex ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) ) ∈ V
13 10 11 xpex ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∈ V
14 13 13 mpoex ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↦ ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ) ∈ V
15 12 14 opelvv ⟨ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↦ ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ) ⟩ ∈ ( V × V )
16 9 15 eqeltrdi ( 𝜑𝐸 ∈ ( V × V ) )
17 1st2nd2 ( 𝐸 ∈ ( V × V ) → 𝐸 = ⟨ ( 1st𝐸 ) , ( 2nd𝐸 ) ⟩ )
18 16 17 syl ( 𝜑𝐸 = ⟨ ( 1st𝐸 ) , ( 2nd𝐸 ) ⟩ )
19 eqid ( 𝑄 ×c 𝐶 ) = ( 𝑄 ×c 𝐶 )
20 2 fucbas ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 )
21 19 20 5 xpcbas ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝑄 ×c 𝐶 ) )
22 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
23 eqid ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) = ( Hom ‘ ( 𝑄 ×c 𝐶 ) )
24 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
25 eqid ( Id ‘ ( 𝑄 ×c 𝐶 ) ) = ( Id ‘ ( 𝑄 ×c 𝐶 ) )
26 eqid ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 )
27 eqid ( comp ‘ ( 𝑄 ×c 𝐶 ) ) = ( comp ‘ ( 𝑄 ×c 𝐶 ) )
28 2 3 4 fuccat ( 𝜑𝑄 ∈ Cat )
29 19 28 3 xpccat ( 𝜑 → ( 𝑄 ×c 𝐶 ) ∈ Cat )
30 relfunc Rel ( 𝐶 Func 𝐷 )
31 simpr ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → 𝑓 ∈ ( 𝐶 Func 𝐷 ) )
32 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝑓 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑓 ) )
33 30 31 32 sylancr ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝑓 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑓 ) )
34 5 22 33 funcf1 ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝑓 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
35 34 ffvelrnda ( ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐷 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
36 35 ralrimiva ( ( 𝜑𝑓 ∈ ( 𝐶 Func 𝐷 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
37 36 ralrimiva ( 𝜑 → ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
38 eqid ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) )
39 38 fmpo ( ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ↔ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) ) : ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ⟶ ( Base ‘ 𝐷 ) )
40 37 39 sylib ( 𝜑 → ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) ) : ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ⟶ ( Base ‘ 𝐷 ) )
41 12 14 op1std ( 𝐸 = ⟨ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↦ ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ) ⟩ → ( 1st𝐸 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) ) )
42 9 41 syl ( 𝜑 → ( 1st𝐸 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) ) )
43 42 feq1d ( 𝜑 → ( ( 1st𝐸 ) : ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ⟶ ( Base ‘ 𝐷 ) ↔ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) ) : ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ⟶ ( Base ‘ 𝐷 ) ) )
44 40 43 mpbird ( 𝜑 → ( 1st𝐸 ) : ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ⟶ ( Base ‘ 𝐷 ) )
45 eqid ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↦ ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ) = ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↦ ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) )
46 ovex ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) ∈ V
47 ovex ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ∈ V
48 46 47 mpoex ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ∈ V
49 48 csbex ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ∈ V
50 49 csbex ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ∈ V
51 45 50 fnmpoi ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↦ ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ) Fn ( ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) × ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) )
52 12 14 op2ndd ( 𝐸 = ⟨ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 1st𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↦ ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ) ⟩ → ( 2nd𝐸 ) = ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↦ ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ) )
53 9 52 syl ( 𝜑 → ( 2nd𝐸 ) = ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↦ ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ) )
54 53 fneq1d ( 𝜑 → ( ( 2nd𝐸 ) Fn ( ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) × ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ↔ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↦ ( 1st𝑥 ) / 𝑚 ( 1st𝑦 ) / 𝑛 ( 𝑎 ∈ ( 𝑚 ( 𝐶 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd𝑦 ) ) ( ⟨ ( ( 1st𝑚 ) ‘ ( 2nd𝑥 ) ) , ( ( 1st𝑚 ) ‘ ( 2nd𝑦 ) ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑛 ) ‘ ( 2nd𝑦 ) ) ) ( ( ( 2nd𝑥 ) ( 2nd𝑚 ) ( 2nd𝑦 ) ) ‘ 𝑔 ) ) ) ) Fn ( ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) × ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ) )
55 51 54 mpbiri ( 𝜑 → ( 2nd𝐸 ) Fn ( ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) × ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) )
56 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐷 ∈ Cat )
57 56 adantr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → 𝐷 ∈ Cat )
58 simplrl ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ∈ ( 𝐶 Func 𝐷 ) )
59 30 58 32 sylancr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝑓 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑓 ) )
60 5 22 59 funcf1 ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝑓 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
61 60 adantr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → ( 1st𝑓 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
62 simplrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑢 ∈ ( Base ‘ 𝐶 ) )
63 62 adantr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → 𝑢 ∈ ( Base ‘ 𝐶 ) )
64 61 63 ffvelrnd ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → ( ( 1st𝑓 ) ‘ 𝑢 ) ∈ ( Base ‘ 𝐷 ) )
65 simplrr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → 𝑣 ∈ ( Base ‘ 𝐶 ) )
66 61 65 ffvelrnd ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → ( ( 1st𝑓 ) ‘ 𝑣 ) ∈ ( Base ‘ 𝐷 ) )
67 simprl ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑔 ∈ ( 𝐶 Func 𝐷 ) )
68 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝑔 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑔 ) )
69 30 67 68 sylancr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝑔 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑔 ) )
70 5 22 69 funcf1 ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝑔 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
71 70 adantr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → ( 1st𝑔 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
72 71 65 ffvelrnd ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → ( ( 1st𝑔 ) ‘ 𝑣 ) ∈ ( Base ‘ 𝐷 ) )
73 simprr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑣 ∈ ( Base ‘ 𝐶 ) )
74 5 6 24 59 62 73 funcf2 ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑢 ( 2nd𝑓 ) 𝑣 ) : ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ⟶ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑣 ) ) )
75 74 adantr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → ( 𝑢 ( 2nd𝑓 ) 𝑣 ) : ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ⟶ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑣 ) ) )
76 simprr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) )
77 75 76 ffvelrnd ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → ( ( 𝑢 ( 2nd𝑓 ) 𝑣 ) ‘ ) ∈ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑣 ) ) )
78 simprl ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) )
79 8 78 nat1st2nd ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → 𝑎 ∈ ( ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ( 𝐶 Nat 𝐷 ) ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ) )
80 8 79 5 24 65 natcl ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → ( 𝑎𝑣 ) ∈ ( ( ( 1st𝑓 ) ‘ 𝑣 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) )
81 22 24 7 57 64 66 72 77 80 catcocl ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ) → ( ( 𝑎𝑣 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑣 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑣 ) ‘ ) ) ∈ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) )
82 81 ralrimivva ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∀ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ( ( 𝑎𝑣 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑣 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑣 ) ‘ ) ) ∈ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) )
83 eqid ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) , ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ↦ ( ( 𝑎𝑣 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑣 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑣 ) ‘ ) ) ) = ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) , ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ↦ ( ( 𝑎𝑣 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑣 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑣 ) ‘ ) ) )
84 83 fmpo ( ∀ 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ∀ ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ( ( 𝑎𝑣 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑣 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑣 ) ‘ ) ) ∈ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ↔ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) , ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ↦ ( ( 𝑎𝑣 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑣 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑣 ) ‘ ) ) ) : ( ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) × ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ⟶ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) )
85 82 84 sylib ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) , ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ↦ ( ( 𝑎𝑣 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑣 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑣 ) ‘ ) ) ) : ( ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) × ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ⟶ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) )
86 3 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat )
87 eqid ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) = ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ )
88 1 86 56 5 6 7 8 58 67 62 73 87 evlf2 ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) = ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) , ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ↦ ( ( 𝑎𝑣 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑣 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑣 ) ‘ ) ) ) )
89 88 feq1d ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) × ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ⟶ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ↔ ( 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) , ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ↦ ( ( 𝑎𝑣 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑣 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑣 ) ‘ ) ) ) : ( ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) × ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ⟶ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ) )
90 85 89 mpbird ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) × ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ⟶ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) )
91 2 8 fuchom ( 𝐶 Nat 𝐷 ) = ( Hom ‘ 𝑄 )
92 19 20 5 91 6 58 62 67 73 23 xpchom2 ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( ⟨ 𝑓 , 𝑢 ⟩ ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) = ( ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) × ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) )
93 1 86 56 5 58 62 evlf1 ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ( 1st𝐸 ) 𝑢 ) = ( ( 1st𝑓 ) ‘ 𝑢 ) )
94 1 86 56 5 67 73 evlf1 ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ( 1st𝐸 ) 𝑣 ) = ( ( 1st𝑔 ) ‘ 𝑣 ) )
95 93 94 oveq12d ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑓 ( 1st𝐸 ) 𝑢 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) = ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) )
96 92 95 feq23d ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑢 ⟩ ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( 𝑓 ( 1st𝐸 ) 𝑢 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) ↔ ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) × ( 𝑢 ( Hom ‘ 𝐶 ) 𝑣 ) ) ⟶ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑔 ) ‘ 𝑣 ) ) ) )
97 90 96 mpbird ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑣 ∈ ( Base ‘ 𝐶 ) ) ) → ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑢 ⟩ ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( 𝑓 ( 1st𝐸 ) 𝑢 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) )
98 97 ralrimivva ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑣 ∈ ( Base ‘ 𝐶 ) ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑢 ⟩ ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( 𝑓 ( 1st𝐸 ) 𝑢 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) )
99 98 ralrimivva ( 𝜑 → ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑢 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑣 ∈ ( Base ‘ 𝐶 ) ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑢 ⟩ ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( 𝑓 ( 1st𝐸 ) 𝑢 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) )
100 oveq2 ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ → ( 𝑥 ( 2nd𝐸 ) 𝑦 ) = ( 𝑥 ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) )
101 oveq2 ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ → ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) )
102 fveq2 ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ → ( ( 1st𝐸 ) ‘ 𝑦 ) = ( ( 1st𝐸 ) ‘ ⟨ 𝑔 , 𝑣 ⟩ ) )
103 df-ov ( 𝑔 ( 1st𝐸 ) 𝑣 ) = ( ( 1st𝐸 ) ‘ ⟨ 𝑔 , 𝑣 ⟩ )
104 102 103 eqtr4di ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ → ( ( 1st𝐸 ) ‘ 𝑦 ) = ( 𝑔 ( 1st𝐸 ) 𝑣 ) )
105 104 oveq2d ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ → ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑦 ) ) = ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) )
106 100 101 105 feq123d ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ → ( ( 𝑥 ( 2nd𝐸 ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑦 ) ) ↔ ( 𝑥 ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) ) )
107 106 ralxp ( ∀ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ( 𝑥 ( 2nd𝐸 ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑦 ) ) ↔ ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑣 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) )
108 oveq1 ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( 𝑥 ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) = ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) )
109 oveq1 ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) = ( ⟨ 𝑓 , 𝑢 ⟩ ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) )
110 fveq2 ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( ( 1st𝐸 ) ‘ 𝑥 ) = ( ( 1st𝐸 ) ‘ ⟨ 𝑓 , 𝑢 ⟩ ) )
111 df-ov ( 𝑓 ( 1st𝐸 ) 𝑢 ) = ( ( 1st𝐸 ) ‘ ⟨ 𝑓 , 𝑢 ⟩ )
112 110 111 eqtr4di ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( ( 1st𝐸 ) ‘ 𝑥 ) = ( 𝑓 ( 1st𝐸 ) 𝑢 ) )
113 112 oveq1d ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) = ( ( 𝑓 ( 1st𝐸 ) 𝑢 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) )
114 108 109 113 feq123d ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( ( 𝑥 ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) ↔ ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑢 ⟩ ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( 𝑓 ( 1st𝐸 ) 𝑢 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) ) )
115 114 2ralbidv ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑣 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) ↔ ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑣 ∈ ( Base ‘ 𝐶 ) ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑢 ⟩ ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( 𝑓 ( 1st𝐸 ) 𝑢 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) ) )
116 107 115 syl5bb ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( ∀ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ( 𝑥 ( 2nd𝐸 ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑦 ) ) ↔ ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑣 ∈ ( Base ‘ 𝐶 ) ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑢 ⟩ ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( 𝑓 ( 1st𝐸 ) 𝑢 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) ) )
117 116 ralxp ( ∀ 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∀ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ( 𝑥 ( 2nd𝐸 ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑦 ) ) ↔ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑢 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑣 ∈ ( Base ‘ 𝐶 ) ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑢 ⟩ ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟶ ( ( 𝑓 ( 1st𝐸 ) 𝑢 ) ( Hom ‘ 𝐷 ) ( 𝑔 ( 1st𝐸 ) 𝑣 ) ) )
118 99 117 sylibr ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∀ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ( 𝑥 ( 2nd𝐸 ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑦 ) ) )
119 118 r19.21bi ( ( 𝜑𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) → ∀ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ( 𝑥 ( 2nd𝐸 ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑦 ) ) )
120 119 r19.21bi ( ( ( 𝜑𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd𝐸 ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑦 ) ) )
121 120 anasss ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ) → ( 𝑥 ( 2nd𝐸 ) 𝑦 ) : ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ⟶ ( ( ( 1st𝐸 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑦 ) ) )
122 28 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑄 ∈ Cat )
123 3 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat )
124 eqid ( Id ‘ 𝑄 ) = ( Id ‘ 𝑄 )
125 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
126 simprl ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ∈ ( 𝐶 Func 𝐷 ) )
127 simprr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑢 ∈ ( Base ‘ 𝐶 ) )
128 19 122 123 20 5 124 125 25 126 127 xpcid ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ ⟨ 𝑓 , 𝑢 ⟩ ) = ⟨ ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑢 ) ⟩ )
129 128 fveq2d ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ ⟨ 𝑓 , 𝑢 ⟩ ) ) = ( ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑢 ) ⟩ ) )
130 df-ov ( ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ( ( Id ‘ 𝐶 ) ‘ 𝑢 ) ) = ( ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) , ( ( Id ‘ 𝐶 ) ‘ 𝑢 ) ⟩ )
131 129 130 eqtr4di ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ ⟨ 𝑓 , 𝑢 ⟩ ) ) = ( ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ( ( Id ‘ 𝐶 ) ‘ 𝑢 ) ) )
132 4 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐷 ∈ Cat )
133 eqid ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) = ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ )
134 20 91 124 122 126 catidcl ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑓 ) )
135 5 6 125 123 127 catidcl ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑢 ) ∈ ( 𝑢 ( Hom ‘ 𝐶 ) 𝑢 ) )
136 1 123 132 5 6 7 8 126 126 127 127 133 134 135 evlf2val ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ( ( Id ‘ 𝐶 ) ‘ 𝑢 ) ) = ( ( ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) ‘ 𝑢 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑢 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑢 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑢 ) ) ) )
137 30 126 32 sylancr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝑓 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑓 ) )
138 5 22 137 funcf1 ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝑓 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
139 138 127 ffvelrnd ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st𝑓 ) ‘ 𝑢 ) ∈ ( Base ‘ 𝐷 ) )
140 22 24 26 132 139 catidcl ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝑓 ) ‘ 𝑢 ) ) ∈ ( ( ( 1st𝑓 ) ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑢 ) ) )
141 22 24 26 132 139 7 139 140 catlid ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝑓 ) ‘ 𝑢 ) ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑢 ) ) ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝑓 ) ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝑓 ) ‘ 𝑢 ) ) )
142 2 124 26 126 fucid ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st𝑓 ) ) )
143 142 fveq1d ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) ‘ 𝑢 ) = ( ( ( Id ‘ 𝐷 ) ∘ ( 1st𝑓 ) ) ‘ 𝑢 ) )
144 fvco3 ( ( ( 1st𝑓 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( Id ‘ 𝐷 ) ∘ ( 1st𝑓 ) ) ‘ 𝑢 ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝑓 ) ‘ 𝑢 ) ) )
145 138 127 144 syl2anc ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( Id ‘ 𝐷 ) ∘ ( 1st𝑓 ) ) ‘ 𝑢 ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝑓 ) ‘ 𝑢 ) ) )
146 143 145 eqtrd ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) ‘ 𝑢 ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝑓 ) ‘ 𝑢 ) ) )
147 5 125 26 137 127 funcid ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑢 ( 2nd𝑓 ) 𝑢 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑢 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝑓 ) ‘ 𝑢 ) ) )
148 146 147 oveq12d ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) ‘ 𝑢 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑢 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑢 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑢 ) ) ) = ( ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝑓 ) ‘ 𝑢 ) ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑢 ) ) ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝑓 ) ‘ 𝑢 ) ) ) )
149 1 123 132 5 126 127 evlf1 ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ( 1st𝐸 ) 𝑢 ) = ( ( 1st𝑓 ) ‘ 𝑢 ) )
150 149 fveq2d ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ( 1st𝐸 ) 𝑢 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝑓 ) ‘ 𝑢 ) ) )
151 141 148 150 3eqtr4d ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( ( Id ‘ 𝑄 ) ‘ 𝑓 ) ‘ 𝑢 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑢 ) , ( ( 1st𝑓 ) ‘ 𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑢 ) ) ( ( 𝑢 ( 2nd𝑓 ) 𝑢 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑢 ) ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ( 1st𝐸 ) 𝑢 ) ) )
152 131 136 151 3eqtrd ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑢 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ ⟨ 𝑓 , 𝑢 ⟩ ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ( 1st𝐸 ) 𝑢 ) ) )
153 152 ralrimivva ( 𝜑 → ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑢 ∈ ( Base ‘ 𝐶 ) ( ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ ⟨ 𝑓 , 𝑢 ⟩ ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ( 1st𝐸 ) 𝑢 ) ) )
154 id ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ )
155 154 154 oveq12d ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( 𝑥 ( 2nd𝐸 ) 𝑥 ) = ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) )
156 fveq2 ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ 𝑥 ) = ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ ⟨ 𝑓 , 𝑢 ⟩ ) )
157 155 156 fveq12d ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( ( 𝑥 ( 2nd𝐸 ) 𝑥 ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ 𝑥 ) ) = ( ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ ⟨ 𝑓 , 𝑢 ⟩ ) ) )
158 112 fveq2d ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐸 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ( 1st𝐸 ) 𝑢 ) ) )
159 157 158 eqeq12d ( 𝑥 = ⟨ 𝑓 , 𝑢 ⟩ → ( ( ( 𝑥 ( 2nd𝐸 ) 𝑥 ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐸 ) ‘ 𝑥 ) ) ↔ ( ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ ⟨ 𝑓 , 𝑢 ⟩ ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ( 1st𝐸 ) 𝑢 ) ) ) )
160 159 ralxp ( ∀ 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ( ( 𝑥 ( 2nd𝐸 ) 𝑥 ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐸 ) ‘ 𝑥 ) ) ↔ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑢 ∈ ( Base ‘ 𝐶 ) ( ( ⟨ 𝑓 , 𝑢 ⟩ ( 2nd𝐸 ) ⟨ 𝑓 , 𝑢 ⟩ ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ ⟨ 𝑓 , 𝑢 ⟩ ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ( 1st𝐸 ) 𝑢 ) ) )
161 153 160 sylibr ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ( ( 𝑥 ( 2nd𝐸 ) 𝑥 ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐸 ) ‘ 𝑥 ) ) )
162 161 r19.21bi ( ( 𝜑𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ( 2nd𝐸 ) 𝑥 ) ‘ ( ( Id ‘ ( 𝑄 ×c 𝐶 ) ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐸 ) ‘ 𝑥 ) ) )
163 3 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝐶 ∈ Cat )
164 4 3ad2ant1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝐷 ∈ Cat )
165 simp21 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) )
166 1st2nd2 ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
167 165 166 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
168 167 165 eqeltrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) )
169 opelxp ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↔ ( ( 1st𝑥 ) ∈ ( 𝐶 Func 𝐷 ) ∧ ( 2nd𝑥 ) ∈ ( Base ‘ 𝐶 ) ) )
170 168 169 sylib ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝑥 ) ∈ ( 𝐶 Func 𝐷 ) ∧ ( 2nd𝑥 ) ∈ ( Base ‘ 𝐶 ) ) )
171 simp22 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) )
172 1st2nd2 ( 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
173 171 172 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
174 173 171 eqeltrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) )
175 opelxp ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↔ ( ( 1st𝑦 ) ∈ ( 𝐶 Func 𝐷 ) ∧ ( 2nd𝑦 ) ∈ ( Base ‘ 𝐶 ) ) )
176 174 175 sylib ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝑦 ) ∈ ( 𝐶 Func 𝐷 ) ∧ ( 2nd𝑦 ) ∈ ( Base ‘ 𝐶 ) ) )
177 simp23 ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) )
178 1st2nd2 ( 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
179 177 178 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
180 179 177 eqeltrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) )
181 opelxp ( ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ↔ ( ( 1st𝑧 ) ∈ ( 𝐶 Func 𝐷 ) ∧ ( 2nd𝑧 ) ∈ ( Base ‘ 𝐶 ) ) )
182 180 181 sylib ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝑧 ) ∈ ( 𝐶 Func 𝐷 ) ∧ ( 2nd𝑧 ) ∈ ( Base ‘ 𝐶 ) ) )
183 simp3l ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) )
184 19 21 91 6 23 165 171 xpchom ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) = ( ( ( 1st𝑥 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) )
185 183 184 eleqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑓 ∈ ( ( ( 1st𝑥 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) )
186 1st2nd2 ( 𝑓 ∈ ( ( ( 1st𝑥 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) → 𝑓 = ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
187 185 186 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑓 = ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
188 187 185 eqeltrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ∈ ( ( ( 1st𝑥 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) )
189 opelxp ( ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ∈ ( ( ( 1st𝑥 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑦 ) ) × ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) ↔ ( ( 1st𝑓 ) ∈ ( ( 1st𝑥 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑦 ) ) ∧ ( 2nd𝑓 ) ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) )
190 188 189 sylib ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝑓 ) ∈ ( ( 1st𝑥 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑦 ) ) ∧ ( 2nd𝑓 ) ∈ ( ( 2nd𝑥 ) ( Hom ‘ 𝐶 ) ( 2nd𝑦 ) ) ) )
191 simp3r ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) )
192 19 21 91 6 23 171 177 xpchom ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) = ( ( ( 1st𝑦 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑧 ) ) × ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) )
193 191 192 eleqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑔 ∈ ( ( ( 1st𝑦 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑧 ) ) × ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) )
194 1st2nd2 ( 𝑔 ∈ ( ( ( 1st𝑦 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑧 ) ) × ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) → 𝑔 = ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ )
195 193 194 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → 𝑔 = ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ )
196 195 193 eqeltrrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ∈ ( ( ( 1st𝑦 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑧 ) ) × ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) )
197 opelxp ( ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ∈ ( ( ( 1st𝑦 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑧 ) ) × ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) ↔ ( ( 1st𝑔 ) ∈ ( ( 1st𝑦 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑧 ) ) ∧ ( 2nd𝑔 ) ∈ ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) )
198 196 197 sylib ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝑔 ) ∈ ( ( 1st𝑦 ) ( 𝐶 Nat 𝐷 ) ( 1st𝑧 ) ) ∧ ( 2nd𝑔 ) ∈ ( ( 2nd𝑦 ) ( Hom ‘ 𝐶 ) ( 2nd𝑧 ) ) ) )
199 1 2 163 164 8 170 176 182 190 198 evlfcllem ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝐸 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ‘ ( ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ( ⟨ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ , ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) ) = ( ( ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ( 2nd𝐸 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ‘ ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ) ( ⟨ ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) , ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ) ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝐸 ) ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ‘ ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) ) )
200 167 179 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑥 ( 2nd𝐸 ) 𝑧 ) = ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝐸 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
201 167 173 opeq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ , ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ⟩ )
202 201 179 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) = ( ⟨ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ , ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
203 202 195 187 oveq123d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) 𝑓 ) = ( ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ( ⟨ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ , ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) )
204 200 203 fveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd𝐸 ) 𝑧 ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) 𝑓 ) ) = ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝐸 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ‘ ( ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ( ⟨ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ , ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) ) )
205 167 fveq2d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝐸 ) ‘ 𝑥 ) = ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) )
206 173 fveq2d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝐸 ) ‘ 𝑦 ) = ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) )
207 205 206 opeq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ⟨ ( ( 1st𝐸 ) ‘ 𝑥 ) , ( ( 1st𝐸 ) ‘ 𝑦 ) ⟩ = ⟨ ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) , ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ⟩ )
208 179 fveq2d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 1st𝐸 ) ‘ 𝑧 ) = ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
209 207 208 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ⟨ ( ( 1st𝐸 ) ‘ 𝑥 ) , ( ( 1st𝐸 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑧 ) ) = ( ⟨ ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) , ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ) )
210 173 179 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑦 ( 2nd𝐸 ) 𝑧 ) = ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ( 2nd𝐸 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
211 210 195 fveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd𝐸 ) 𝑧 ) ‘ 𝑔 ) = ( ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ( 2nd𝐸 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ‘ ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ) )
212 167 173 oveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( 𝑥 ( 2nd𝐸 ) 𝑦 ) = ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝐸 ) ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) )
213 212 187 fveq12d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd𝐸 ) 𝑦 ) ‘ 𝑓 ) = ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝐸 ) ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ‘ ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) )
214 209 211 213 oveq123d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd𝐸 ) 𝑧 ) ‘ 𝑔 ) ( ⟨ ( ( 1st𝐸 ) ‘ 𝑥 ) , ( ( 1st𝐸 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd𝐸 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ( 2nd𝐸 ) ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ‘ ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ) ( ⟨ ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ) , ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) ) ( ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ( 2nd𝐸 ) ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ ) ‘ ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ) ) )
215 199 204 214 3eqtr4d ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( 𝐶 Func 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd𝐸 ) 𝑧 ) ‘ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd𝐸 ) 𝑧 ) ‘ 𝑔 ) ( ⟨ ( ( 1st𝐸 ) ‘ 𝑥 ) , ( ( 1st𝐸 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd𝐸 ) 𝑦 ) ‘ 𝑓 ) ) )
216 21 22 23 24 25 26 27 7 29 4 44 55 121 162 215 isfuncd ( 𝜑 → ( 1st𝐸 ) ( ( 𝑄 ×c 𝐶 ) Func 𝐷 ) ( 2nd𝐸 ) )
217 df-br ( ( 1st𝐸 ) ( ( 𝑄 ×c 𝐶 ) Func 𝐷 ) ( 2nd𝐸 ) ↔ ⟨ ( 1st𝐸 ) , ( 2nd𝐸 ) ⟩ ∈ ( ( 𝑄 ×c 𝐶 ) Func 𝐷 ) )
218 216 217 sylib ( 𝜑 → ⟨ ( 1st𝐸 ) , ( 2nd𝐸 ) ⟩ ∈ ( ( 𝑄 ×c 𝐶 ) Func 𝐷 ) )
219 18 218 eqeltrd ( 𝜑𝐸 ∈ ( ( 𝑄 ×c 𝐶 ) Func 𝐷 ) )