Metamath Proof Explorer


Theorem evlfcl

Description: The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors C --> D , and the second parameter in D . (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfcl.e ⊒ 𝐸 = ( 𝐢 evalF 𝐷 )
evlfcl.q ⊒ 𝑄 = ( 𝐢 FuncCat 𝐷 )
evlfcl.c ⊒ ( πœ‘ β†’ 𝐢 ∈ Cat )
evlfcl.d ⊒ ( πœ‘ β†’ 𝐷 ∈ Cat )
Assertion evlfcl ( πœ‘ β†’ 𝐸 ∈ ( ( 𝑄 Γ—c 𝐢 ) Func 𝐷 ) )

Proof

Step Hyp Ref Expression
1 evlfcl.e ⊒ 𝐸 = ( 𝐢 evalF 𝐷 )
2 evlfcl.q ⊒ 𝑄 = ( 𝐢 FuncCat 𝐷 )
3 evlfcl.c ⊒ ( πœ‘ β†’ 𝐢 ∈ Cat )
4 evlfcl.d ⊒ ( πœ‘ β†’ 𝐷 ∈ Cat )
5 eqid ⊒ ( Base β€˜ 𝐢 ) = ( Base β€˜ 𝐢 )
6 eqid ⊒ ( Hom β€˜ 𝐢 ) = ( Hom β€˜ 𝐢 )
7 eqid ⊒ ( comp β€˜ 𝐷 ) = ( comp β€˜ 𝐷 )
8 eqid ⊒ ( 𝐢 Nat 𝐷 ) = ( 𝐢 Nat 𝐷 )
9 1 3 4 5 6 7 8 evlfval ⊒ ( πœ‘ β†’ 𝐸 = ⟨ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ) , ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) , 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↦ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ) ⟩ )
10 ovex ⊒ ( 𝐢 Func 𝐷 ) ∈ V
11 fvex ⊒ ( Base β€˜ 𝐢 ) ∈ V
12 10 11 mpoex ⊒ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ) ∈ V
13 10 11 xpex ⊒ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∈ V
14 13 13 mpoex ⊒ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) , 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↦ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ) ∈ V
15 12 14 opelvv ⊒ ⟨ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ) , ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) , 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↦ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ) ⟩ ∈ ( V Γ— V )
16 9 15 eqeltrdi ⊒ ( πœ‘ β†’ 𝐸 ∈ ( V Γ— V ) )
17 1st2nd2 ⊒ ( 𝐸 ∈ ( V Γ— V ) β†’ 𝐸 = ⟨ ( 1st β€˜ 𝐸 ) , ( 2nd β€˜ 𝐸 ) ⟩ )
18 16 17 syl ⊒ ( πœ‘ β†’ 𝐸 = ⟨ ( 1st β€˜ 𝐸 ) , ( 2nd β€˜ 𝐸 ) ⟩ )
19 eqid ⊒ ( 𝑄 Γ—c 𝐢 ) = ( 𝑄 Γ—c 𝐢 )
20 2 fucbas ⊒ ( 𝐢 Func 𝐷 ) = ( Base β€˜ 𝑄 )
21 19 20 5 xpcbas ⊒ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) = ( Base β€˜ ( 𝑄 Γ—c 𝐢 ) )
22 eqid ⊒ ( Base β€˜ 𝐷 ) = ( Base β€˜ 𝐷 )
23 eqid ⊒ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) = ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) )
24 eqid ⊒ ( Hom β€˜ 𝐷 ) = ( Hom β€˜ 𝐷 )
25 eqid ⊒ ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) = ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) )
26 eqid ⊒ ( Id β€˜ 𝐷 ) = ( Id β€˜ 𝐷 )
27 eqid ⊒ ( comp β€˜ ( 𝑄 Γ—c 𝐢 ) ) = ( comp β€˜ ( 𝑄 Γ—c 𝐢 ) )
28 2 3 4 fuccat ⊒ ( πœ‘ β†’ 𝑄 ∈ Cat )
29 19 28 3 xpccat ⊒ ( πœ‘ β†’ ( 𝑄 Γ—c 𝐢 ) ∈ Cat )
30 relfunc ⊒ Rel ( 𝐢 Func 𝐷 )
31 simpr ⊒ ( ( πœ‘ ∧ 𝑓 ∈ ( 𝐢 Func 𝐷 ) ) β†’ 𝑓 ∈ ( 𝐢 Func 𝐷 ) )
32 1st2ndbr ⊒ ( ( Rel ( 𝐢 Func 𝐷 ) ∧ 𝑓 ∈ ( 𝐢 Func 𝐷 ) ) β†’ ( 1st β€˜ 𝑓 ) ( 𝐢 Func 𝐷 ) ( 2nd β€˜ 𝑓 ) )
33 30 31 32 sylancr ⊒ ( ( πœ‘ ∧ 𝑓 ∈ ( 𝐢 Func 𝐷 ) ) β†’ ( 1st β€˜ 𝑓 ) ( 𝐢 Func 𝐷 ) ( 2nd β€˜ 𝑓 ) )
34 5 22 33 funcf1 ⊒ ( ( πœ‘ ∧ 𝑓 ∈ ( 𝐢 Func 𝐷 ) ) β†’ ( 1st β€˜ 𝑓 ) : ( Base β€˜ 𝐢 ) ⟢ ( Base β€˜ 𝐷 ) )
35 34 ffvelcdmda ⊒ ( ( ( πœ‘ ∧ 𝑓 ∈ ( 𝐢 Func 𝐷 ) ) ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐷 ) )
36 35 ralrimiva ⊒ ( ( πœ‘ ∧ 𝑓 ∈ ( 𝐢 Func 𝐷 ) ) β†’ βˆ€ π‘₯ ∈ ( Base β€˜ 𝐢 ) ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐷 ) )
37 36 ralrimiva ⊒ ( πœ‘ β†’ βˆ€ 𝑓 ∈ ( 𝐢 Func 𝐷 ) βˆ€ π‘₯ ∈ ( Base β€˜ 𝐢 ) ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐷 ) )
38 eqid ⊒ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ) = ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) )
39 38 fmpo ⊒ ( βˆ€ 𝑓 ∈ ( 𝐢 Func 𝐷 ) βˆ€ π‘₯ ∈ ( Base β€˜ 𝐢 ) ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐷 ) ↔ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ) : ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ⟢ ( Base β€˜ 𝐷 ) )
40 37 39 sylib ⊒ ( πœ‘ β†’ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ) : ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ⟢ ( Base β€˜ 𝐷 ) )
41 12 14 op1std ⊒ ( 𝐸 = ⟨ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ) , ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) , 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↦ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ) ⟩ β†’ ( 1st β€˜ 𝐸 ) = ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ) )
42 9 41 syl ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝐸 ) = ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ) )
43 42 feq1d ⊒ ( πœ‘ β†’ ( ( 1st β€˜ 𝐸 ) : ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ⟢ ( Base β€˜ 𝐷 ) ↔ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ) : ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ⟢ ( Base β€˜ 𝐷 ) ) )
44 40 43 mpbird ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝐸 ) : ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ⟢ ( Base β€˜ 𝐷 ) )
45 eqid ⊒ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) , 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↦ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ) = ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) , 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↦ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) )
46 ovex ⊒ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) ∈ V
47 ovex ⊒ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ∈ V
48 46 47 mpoex ⊒ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ∈ V
49 48 csbex ⊒ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ∈ V
50 49 csbex ⊒ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ∈ V
51 45 50 fnmpoi ⊒ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) , 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↦ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ) Fn ( ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) Γ— ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) )
52 12 14 op2ndd ⊒ ( 𝐸 = ⟨ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) , π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ( ( 1st β€˜ 𝑓 ) β€˜ π‘₯ ) ) , ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) , 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↦ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ) ⟩ β†’ ( 2nd β€˜ 𝐸 ) = ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) , 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↦ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ) )
53 9 52 syl ⊒ ( πœ‘ β†’ ( 2nd β€˜ 𝐸 ) = ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) , 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↦ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ) )
54 53 fneq1d ⊒ ( πœ‘ β†’ ( ( 2nd β€˜ 𝐸 ) Fn ( ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) Γ— ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ↔ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) , 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↦ ⦋ ( 1st β€˜ π‘₯ ) / π‘š ⦌ ⦋ ( 1st β€˜ 𝑦 ) / 𝑛 ⦌ ( π‘Ž ∈ ( π‘š ( 𝐢 Nat 𝐷 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ↦ ( ( π‘Ž β€˜ ( 2nd β€˜ 𝑦 ) ) ( ⟨ ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ π‘₯ ) ) , ( ( 1st β€˜ π‘š ) β€˜ ( 2nd β€˜ 𝑦 ) ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑛 ) β€˜ ( 2nd β€˜ 𝑦 ) ) ) ( ( ( 2nd β€˜ π‘₯ ) ( 2nd β€˜ π‘š ) ( 2nd β€˜ 𝑦 ) ) β€˜ 𝑔 ) ) ) ) Fn ( ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) Γ— ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ) )
55 51 54 mpbiri ⊒ ( πœ‘ β†’ ( 2nd β€˜ 𝐸 ) Fn ( ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) Γ— ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) )
56 4 ad2antrr ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝐷 ∈ Cat )
57 56 adantr ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ 𝐷 ∈ Cat )
58 simplrl ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝑓 ∈ ( 𝐢 Func 𝐷 ) )
59 30 58 32 sylancr ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 1st β€˜ 𝑓 ) ( 𝐢 Func 𝐷 ) ( 2nd β€˜ 𝑓 ) )
60 5 22 59 funcf1 ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 1st β€˜ 𝑓 ) : ( Base β€˜ 𝐢 ) ⟢ ( Base β€˜ 𝐷 ) )
61 60 adantr ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ ( 1st β€˜ 𝑓 ) : ( Base β€˜ 𝐢 ) ⟢ ( Base β€˜ 𝐷 ) )
62 simplrr ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝑒 ∈ ( Base β€˜ 𝐢 ) )
63 62 adantr ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ 𝑒 ∈ ( Base β€˜ 𝐢 ) )
64 61 63 ffvelcdmd ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ∈ ( Base β€˜ 𝐷 ) )
65 simplrr ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ 𝑣 ∈ ( Base β€˜ 𝐢 ) )
66 61 65 ffvelcdmd ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ∈ ( Base β€˜ 𝐷 ) )
67 simprl ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝑔 ∈ ( 𝐢 Func 𝐷 ) )
68 1st2ndbr ⊒ ( ( Rel ( 𝐢 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐢 Func 𝐷 ) ) β†’ ( 1st β€˜ 𝑔 ) ( 𝐢 Func 𝐷 ) ( 2nd β€˜ 𝑔 ) )
69 30 67 68 sylancr ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 1st β€˜ 𝑔 ) ( 𝐢 Func 𝐷 ) ( 2nd β€˜ 𝑔 ) )
70 5 22 69 funcf1 ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 1st β€˜ 𝑔 ) : ( Base β€˜ 𝐢 ) ⟢ ( Base β€˜ 𝐷 ) )
71 70 adantr ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ ( 1st β€˜ 𝑔 ) : ( Base β€˜ 𝐢 ) ⟢ ( Base β€˜ 𝐷 ) )
72 71 65 ffvelcdmd ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ∈ ( Base β€˜ 𝐷 ) )
73 simprr ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝑣 ∈ ( Base β€˜ 𝐢 ) )
74 5 6 24 59 62 73 funcf2 ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) : ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ⟢ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ) )
75 74 adantr ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) : ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ⟢ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ) )
76 simprr ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) )
77 75 76 ffvelcdmd ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) β€˜ β„Ž ) ∈ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ) )
78 simprl ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) )
79 8 78 nat1st2nd ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ π‘Ž ∈ ( ⟨ ( 1st β€˜ 𝑓 ) , ( 2nd β€˜ 𝑓 ) ⟩ ( 𝐢 Nat 𝐷 ) ⟨ ( 1st β€˜ 𝑔 ) , ( 2nd β€˜ 𝑔 ) ⟩ ) )
80 8 79 5 24 65 natcl ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ ( π‘Ž β€˜ 𝑣 ) ∈ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) )
81 22 24 7 57 64 66 72 77 80 catcocl ⊒ ( ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) ∧ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ) β†’ ( ( π‘Ž β€˜ 𝑣 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) β€˜ β„Ž ) ) ∈ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) )
82 81 ralrimivva ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ βˆ€ π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) βˆ€ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ( ( π‘Ž β€˜ 𝑣 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) β€˜ β„Ž ) ) ∈ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) )
83 eqid ⊒ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) , β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ↦ ( ( π‘Ž β€˜ 𝑣 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) β€˜ β„Ž ) ) ) = ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) , β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ↦ ( ( π‘Ž β€˜ 𝑣 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) β€˜ β„Ž ) ) )
84 83 fmpo ⊒ ( βˆ€ π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) βˆ€ β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ( ( π‘Ž β€˜ 𝑣 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) β€˜ β„Ž ) ) ∈ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ↔ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) , β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ↦ ( ( π‘Ž β€˜ 𝑣 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) β€˜ β„Ž ) ) ) : ( ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) Γ— ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ⟢ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) )
85 82 84 sylib ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) , β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ↦ ( ( π‘Ž β€˜ 𝑣 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) β€˜ β„Ž ) ) ) : ( ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) Γ— ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ⟢ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) )
86 3 ad2antrr ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝐢 ∈ Cat )
87 eqid ⊒ ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) = ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ )
88 1 86 56 5 6 7 8 58 67 62 73 87 evlf2 ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) = ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) , β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ↦ ( ( π‘Ž β€˜ 𝑣 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) β€˜ β„Ž ) ) ) )
89 88 feq1d ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) Γ— ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ⟢ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ↔ ( π‘Ž ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) , β„Ž ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ↦ ( ( π‘Ž β€˜ 𝑣 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑣 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑣 ) β€˜ β„Ž ) ) ) : ( ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) Γ— ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ⟢ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ) )
90 85 89 mpbird ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) Γ— ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ⟢ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) )
91 2 8 fuchom ⊒ ( 𝐢 Nat 𝐷 ) = ( Hom β€˜ 𝑄 )
92 19 20 5 91 6 58 62 67 73 23 xpchom2 ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ⟨ 𝑓 , 𝑒 ⟩ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) = ( ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) Γ— ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) )
93 1 86 56 5 58 62 evlf1 ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) = ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) )
94 1 86 56 5 67 73 evlf1 ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) = ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) )
95 93 94 oveq12d ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) = ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) )
96 92 95 feq23d ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑒 ⟩ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) ↔ ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑔 ) Γ— ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑣 ) ) ⟢ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑔 ) β€˜ 𝑣 ) ) ) )
97 90 96 mpbird ⊒ ( ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑔 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑣 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑒 ⟩ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) )
98 97 ralrimivva ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ βˆ€ 𝑔 ∈ ( 𝐢 Func 𝐷 ) βˆ€ 𝑣 ∈ ( Base β€˜ 𝐢 ) ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑒 ⟩ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) )
99 98 ralrimivva ⊒ ( πœ‘ β†’ βˆ€ 𝑓 ∈ ( 𝐢 Func 𝐷 ) βˆ€ 𝑒 ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑔 ∈ ( 𝐢 Func 𝐷 ) βˆ€ 𝑣 ∈ ( Base β€˜ 𝐢 ) ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑒 ⟩ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) )
100 oveq2 ⊒ ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ β†’ ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) = ( π‘₯ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) )
101 oveq2 ⊒ ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ β†’ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) = ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) )
102 fveq2 ⊒ ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ β†’ ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) = ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ 𝑔 , 𝑣 ⟩ ) )
103 df-ov ⊒ ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) = ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ 𝑔 , 𝑣 ⟩ )
104 102 103 eqtr4di ⊒ ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ β†’ ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) = ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) )
105 104 oveq2d ⊒ ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ β†’ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ) = ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) )
106 100 101 105 feq123d ⊒ ( 𝑦 = ⟨ 𝑔 , 𝑣 ⟩ β†’ ( ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ) ↔ ( π‘₯ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) ) )
107 106 ralxp ⊒ ( βˆ€ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ) ↔ βˆ€ 𝑔 ∈ ( 𝐢 Func 𝐷 ) βˆ€ 𝑣 ∈ ( Base β€˜ 𝐢 ) ( π‘₯ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) )
108 oveq1 ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( π‘₯ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) = ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) )
109 oveq1 ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) = ( ⟨ 𝑓 , 𝑒 ⟩ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) )
110 fveq2 ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) = ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ 𝑓 , 𝑒 ⟩ ) )
111 df-ov ⊒ ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) = ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ 𝑓 , 𝑒 ⟩ )
112 110 111 eqtr4di ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) = ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) )
113 112 oveq1d ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) = ( ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) )
114 108 109 113 feq123d ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( ( π‘₯ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) ↔ ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑒 ⟩ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) ) )
115 114 2ralbidv ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( βˆ€ 𝑔 ∈ ( 𝐢 Func 𝐷 ) βˆ€ 𝑣 ∈ ( Base β€˜ 𝐢 ) ( π‘₯ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) ↔ βˆ€ 𝑔 ∈ ( 𝐢 Func 𝐷 ) βˆ€ 𝑣 ∈ ( Base β€˜ 𝐢 ) ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑒 ⟩ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) ) )
116 107 115 bitrid ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( βˆ€ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ) ↔ βˆ€ 𝑔 ∈ ( 𝐢 Func 𝐷 ) βˆ€ 𝑣 ∈ ( Base β€˜ 𝐢 ) ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑒 ⟩ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) ) )
117 116 ralxp ⊒ ( βˆ€ π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) βˆ€ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ) ↔ βˆ€ 𝑓 ∈ ( 𝐢 Func 𝐷 ) βˆ€ 𝑒 ∈ ( Base β€˜ 𝐢 ) βˆ€ 𝑔 ∈ ( 𝐢 Func 𝐷 ) βˆ€ 𝑣 ∈ ( Base β€˜ 𝐢 ) ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑔 , 𝑣 ⟩ ) : ( ⟨ 𝑓 , 𝑒 ⟩ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ 𝑔 , 𝑣 ⟩ ) ⟢ ( ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ( Hom β€˜ 𝐷 ) ( 𝑔 ( 1st β€˜ 𝐸 ) 𝑣 ) ) )
118 99 117 sylibr ⊒ ( πœ‘ β†’ βˆ€ π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) βˆ€ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ) )
119 118 r19.21bi ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) β†’ βˆ€ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ) )
120 119 r19.21bi ⊒ ( ( ( πœ‘ ∧ π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) β†’ ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ) )
121 120 anasss ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ) β†’ ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ) )
122 28 adantr ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝑄 ∈ Cat )
123 3 adantr ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝐢 ∈ Cat )
124 eqid ⊒ ( Id β€˜ 𝑄 ) = ( Id β€˜ 𝑄 )
125 eqid ⊒ ( Id β€˜ 𝐢 ) = ( Id β€˜ 𝐢 )
126 simprl ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝑓 ∈ ( 𝐢 Func 𝐷 ) )
127 simprr ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝑒 ∈ ( Base β€˜ 𝐢 ) )
128 19 122 123 20 5 124 125 25 126 127 xpcid ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ ⟨ 𝑓 , 𝑒 ⟩ ) = ⟨ ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) , ( ( Id β€˜ 𝐢 ) β€˜ 𝑒 ) ⟩ )
129 128 fveq2d ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ ⟨ 𝑓 , 𝑒 ⟩ ) ) = ( ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) β€˜ ⟨ ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) , ( ( Id β€˜ 𝐢 ) β€˜ 𝑒 ) ⟩ ) )
130 df-ov ⊒ ( ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) ( ( Id β€˜ 𝐢 ) β€˜ 𝑒 ) ) = ( ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) β€˜ ⟨ ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) , ( ( Id β€˜ 𝐢 ) β€˜ 𝑒 ) ⟩ )
131 129 130 eqtr4di ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ ⟨ 𝑓 , 𝑒 ⟩ ) ) = ( ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) ( ( Id β€˜ 𝐢 ) β€˜ 𝑒 ) ) )
132 4 adantr ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝐷 ∈ Cat )
133 eqid ⊒ ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) = ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ )
134 20 91 124 122 126 catidcl ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) ∈ ( 𝑓 ( 𝐢 Nat 𝐷 ) 𝑓 ) )
135 5 6 125 123 127 catidcl ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( Id β€˜ 𝐢 ) β€˜ 𝑒 ) ∈ ( 𝑒 ( Hom β€˜ 𝐢 ) 𝑒 ) )
136 1 123 132 5 6 7 8 126 126 127 127 133 134 135 evlf2val ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) ( ( Id β€˜ 𝐢 ) β€˜ 𝑒 ) ) = ( ( ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) β€˜ 𝑒 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑒 ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ 𝑒 ) ) ) )
137 30 126 32 sylancr ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 1st β€˜ 𝑓 ) ( 𝐢 Func 𝐷 ) ( 2nd β€˜ 𝑓 ) )
138 5 22 137 funcf1 ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 1st β€˜ 𝑓 ) : ( Base β€˜ 𝐢 ) ⟢ ( Base β€˜ 𝐷 ) )
139 138 127 ffvelcdmd ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ∈ ( Base β€˜ 𝐷 ) )
140 22 24 26 132 139 catidcl ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) ∈ ( ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) )
141 22 24 26 132 139 7 139 140 catlid ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) )
142 2 124 26 126 fucid ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) = ( ( Id β€˜ 𝐷 ) ∘ ( 1st β€˜ 𝑓 ) ) )
143 142 fveq1d ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) β€˜ 𝑒 ) = ( ( ( Id β€˜ 𝐷 ) ∘ ( 1st β€˜ 𝑓 ) ) β€˜ 𝑒 ) )
144 fvco3 ⊒ ( ( ( 1st β€˜ 𝑓 ) : ( Base β€˜ 𝐢 ) ⟢ ( Base β€˜ 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( ( Id β€˜ 𝐷 ) ∘ ( 1st β€˜ 𝑓 ) ) β€˜ 𝑒 ) = ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) )
145 138 127 144 syl2anc ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ( Id β€˜ 𝐷 ) ∘ ( 1st β€˜ 𝑓 ) ) β€˜ 𝑒 ) = ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) )
146 143 145 eqtrd ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) β€˜ 𝑒 ) = ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) )
147 5 125 26 137 127 funcid ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑒 ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ 𝑒 ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) )
148 146 147 oveq12d ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) β€˜ 𝑒 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑒 ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ 𝑒 ) ) ) = ( ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) ) )
149 1 123 132 5 126 127 evlf1 ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) = ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) )
150 149 fveq2d ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( Id β€˜ 𝐷 ) β€˜ ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) )
151 141 148 150 3eqtr4d ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ( ( Id β€˜ 𝑄 ) β€˜ 𝑓 ) β€˜ 𝑒 ) ( ⟨ ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) , ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝑓 ) β€˜ 𝑒 ) ) ( ( 𝑒 ( 2nd β€˜ 𝑓 ) 𝑒 ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ 𝑒 ) ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ) )
152 131 136 151 3eqtrd ⊒ ( ( πœ‘ ∧ ( 𝑓 ∈ ( 𝐢 Func 𝐷 ) ∧ 𝑒 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ ⟨ 𝑓 , 𝑒 ⟩ ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ) )
153 152 ralrimivva ⊒ ( πœ‘ β†’ βˆ€ 𝑓 ∈ ( 𝐢 Func 𝐷 ) βˆ€ 𝑒 ∈ ( Base β€˜ 𝐢 ) ( ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ ⟨ 𝑓 , 𝑒 ⟩ ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ) )
154 id ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ )
155 154 154 oveq12d ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( π‘₯ ( 2nd β€˜ 𝐸 ) π‘₯ ) = ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) )
156 fveq2 ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ π‘₯ ) = ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ ⟨ 𝑓 , 𝑒 ⟩ ) )
157 155 156 fveq12d ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( ( π‘₯ ( 2nd β€˜ 𝐸 ) π‘₯ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ π‘₯ ) ) = ( ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ ⟨ 𝑓 , 𝑒 ⟩ ) ) )
158 112 fveq2d ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ) )
159 157 158 eqeq12d ⊒ ( π‘₯ = ⟨ 𝑓 , 𝑒 ⟩ β†’ ( ( ( π‘₯ ( 2nd β€˜ 𝐸 ) π‘₯ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ π‘₯ ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ) ↔ ( ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ ⟨ 𝑓 , 𝑒 ⟩ ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ) ) )
160 159 ralxp ⊒ ( βˆ€ π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐸 ) π‘₯ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ π‘₯ ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ) ↔ βˆ€ 𝑓 ∈ ( 𝐢 Func 𝐷 ) βˆ€ 𝑒 ∈ ( Base β€˜ 𝐢 ) ( ( ⟨ 𝑓 , 𝑒 ⟩ ( 2nd β€˜ 𝐸 ) ⟨ 𝑓 , 𝑒 ⟩ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ ⟨ 𝑓 , 𝑒 ⟩ ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( 𝑓 ( 1st β€˜ 𝐸 ) 𝑒 ) ) )
161 153 160 sylibr ⊒ ( πœ‘ β†’ βˆ€ π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐸 ) π‘₯ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ π‘₯ ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ) )
162 161 r19.21bi ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐸 ) π‘₯ ) β€˜ ( ( Id β€˜ ( 𝑄 Γ—c 𝐢 ) ) β€˜ π‘₯ ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) ) )
163 3 3ad2ant1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝐢 ∈ Cat )
164 4 3ad2ant1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝐷 ∈ Cat )
165 simp21 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) )
166 1st2nd2 ⊒ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) β†’ π‘₯ = ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ )
167 165 166 syl ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ π‘₯ = ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ )
168 167 165 eqeltrrd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) )
169 opelxp ⊒ ( ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↔ ( ( 1st β€˜ π‘₯ ) ∈ ( 𝐢 Func 𝐷 ) ∧ ( 2nd β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐢 ) ) )
170 168 169 sylib ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ π‘₯ ) ∈ ( 𝐢 Func 𝐷 ) ∧ ( 2nd β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐢 ) ) )
171 simp22 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) )
172 1st2nd2 ⊒ ( 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) β†’ 𝑦 = ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ )
173 171 172 syl ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝑦 = ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ )
174 173 171 eqeltrrd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) )
175 opelxp ⊒ ( ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↔ ( ( 1st β€˜ 𝑦 ) ∈ ( 𝐢 Func 𝐷 ) ∧ ( 2nd β€˜ 𝑦 ) ∈ ( Base β€˜ 𝐢 ) ) )
176 174 175 sylib ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝑦 ) ∈ ( 𝐢 Func 𝐷 ) ∧ ( 2nd β€˜ 𝑦 ) ∈ ( Base β€˜ 𝐢 ) ) )
177 simp23 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) )
178 1st2nd2 ⊒ ( 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) β†’ 𝑧 = ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ )
179 177 178 syl ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝑧 = ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ )
180 179 177 eqeltrrd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) )
181 opelxp ⊒ ( ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ↔ ( ( 1st β€˜ 𝑧 ) ∈ ( 𝐢 Func 𝐷 ) ∧ ( 2nd β€˜ 𝑧 ) ∈ ( Base β€˜ 𝐢 ) ) )
182 180 181 sylib ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝑧 ) ∈ ( 𝐢 Func 𝐷 ) ∧ ( 2nd β€˜ 𝑧 ) ∈ ( Base β€˜ 𝐢 ) ) )
183 simp3l ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) )
184 19 21 91 6 23 165 171 xpchom ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) = ( ( ( 1st β€˜ π‘₯ ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑦 ) ) Γ— ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ) )
185 183 184 eleqtrd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝑓 ∈ ( ( ( 1st β€˜ π‘₯ ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑦 ) ) Γ— ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ) )
186 1st2nd2 ⊒ ( 𝑓 ∈ ( ( ( 1st β€˜ π‘₯ ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑦 ) ) Γ— ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ) β†’ 𝑓 = ⟨ ( 1st β€˜ 𝑓 ) , ( 2nd β€˜ 𝑓 ) ⟩ )
187 185 186 syl ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝑓 = ⟨ ( 1st β€˜ 𝑓 ) , ( 2nd β€˜ 𝑓 ) ⟩ )
188 187 185 eqeltrrd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ⟨ ( 1st β€˜ 𝑓 ) , ( 2nd β€˜ 𝑓 ) ⟩ ∈ ( ( ( 1st β€˜ π‘₯ ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑦 ) ) Γ— ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ) )
189 opelxp ⊒ ( ⟨ ( 1st β€˜ 𝑓 ) , ( 2nd β€˜ 𝑓 ) ⟩ ∈ ( ( ( 1st β€˜ π‘₯ ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑦 ) ) Γ— ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ) ↔ ( ( 1st β€˜ 𝑓 ) ∈ ( ( 1st β€˜ π‘₯ ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑦 ) ) ∧ ( 2nd β€˜ 𝑓 ) ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ) )
190 188 189 sylib ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝑓 ) ∈ ( ( 1st β€˜ π‘₯ ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑦 ) ) ∧ ( 2nd β€˜ 𝑓 ) ∈ ( ( 2nd β€˜ π‘₯ ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑦 ) ) ) )
191 simp3r ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) )
192 19 21 91 6 23 171 177 xpchom ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) = ( ( ( 1st β€˜ 𝑦 ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑧 ) ) Γ— ( ( 2nd β€˜ 𝑦 ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑧 ) ) ) )
193 191 192 eleqtrd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝑔 ∈ ( ( ( 1st β€˜ 𝑦 ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑧 ) ) Γ— ( ( 2nd β€˜ 𝑦 ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑧 ) ) ) )
194 1st2nd2 ⊒ ( 𝑔 ∈ ( ( ( 1st β€˜ 𝑦 ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑧 ) ) Γ— ( ( 2nd β€˜ 𝑦 ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑧 ) ) ) β†’ 𝑔 = ⟨ ( 1st β€˜ 𝑔 ) , ( 2nd β€˜ 𝑔 ) ⟩ )
195 193 194 syl ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ 𝑔 = ⟨ ( 1st β€˜ 𝑔 ) , ( 2nd β€˜ 𝑔 ) ⟩ )
196 195 193 eqeltrrd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ⟨ ( 1st β€˜ 𝑔 ) , ( 2nd β€˜ 𝑔 ) ⟩ ∈ ( ( ( 1st β€˜ 𝑦 ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑧 ) ) Γ— ( ( 2nd β€˜ 𝑦 ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑧 ) ) ) )
197 opelxp ⊒ ( ⟨ ( 1st β€˜ 𝑔 ) , ( 2nd β€˜ 𝑔 ) ⟩ ∈ ( ( ( 1st β€˜ 𝑦 ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑧 ) ) Γ— ( ( 2nd β€˜ 𝑦 ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑧 ) ) ) ↔ ( ( 1st β€˜ 𝑔 ) ∈ ( ( 1st β€˜ 𝑦 ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑧 ) ) ∧ ( 2nd β€˜ 𝑔 ) ∈ ( ( 2nd β€˜ 𝑦 ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑧 ) ) ) )
198 196 197 sylib ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝑔 ) ∈ ( ( 1st β€˜ 𝑦 ) ( 𝐢 Nat 𝐷 ) ( 1st β€˜ 𝑧 ) ) ∧ ( 2nd β€˜ 𝑔 ) ∈ ( ( 2nd β€˜ 𝑦 ) ( Hom β€˜ 𝐢 ) ( 2nd β€˜ 𝑧 ) ) ) )
199 1 2 163 164 8 170 176 182 190 198 evlfcllem ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ( 2nd β€˜ 𝐸 ) ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) β€˜ ( ⟨ ( 1st β€˜ 𝑔 ) , ( 2nd β€˜ 𝑔 ) ⟩ ( ⟨ ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ , ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ⟩ ( comp β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) ⟨ ( 1st β€˜ 𝑓 ) , ( 2nd β€˜ 𝑓 ) ⟩ ) ) = ( ( ( ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ( 2nd β€˜ 𝐸 ) ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) β€˜ ⟨ ( 1st β€˜ 𝑔 ) , ( 2nd β€˜ 𝑔 ) ⟩ ) ( ⟨ ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ) , ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) ) ( ( ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ( 2nd β€˜ 𝐸 ) ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ) β€˜ ⟨ ( 1st β€˜ 𝑓 ) , ( 2nd β€˜ 𝑓 ) ⟩ ) ) )
200 167 179 oveq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑧 ) = ( ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ( 2nd β€˜ 𝐸 ) ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) )
201 167 173 opeq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ⟨ π‘₯ , 𝑦 ⟩ = ⟨ ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ , ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ⟩ )
202 201 179 oveq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) = ( ⟨ ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ , ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ⟩ ( comp β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) )
203 202 195 187 oveq123d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) 𝑓 ) = ( ⟨ ( 1st β€˜ 𝑔 ) , ( 2nd β€˜ 𝑔 ) ⟩ ( ⟨ ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ , ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ⟩ ( comp β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) ⟨ ( 1st β€˜ 𝑓 ) , ( 2nd β€˜ 𝑓 ) ⟩ ) )
204 200 203 fveq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑧 ) β€˜ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) 𝑓 ) ) = ( ( ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ( 2nd β€˜ 𝐸 ) ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) β€˜ ( ⟨ ( 1st β€˜ 𝑔 ) , ( 2nd β€˜ 𝑔 ) ⟩ ( ⟨ ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ , ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ⟩ ( comp β€˜ ( 𝑄 Γ—c 𝐢 ) ) ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) ⟨ ( 1st β€˜ 𝑓 ) , ( 2nd β€˜ 𝑓 ) ⟩ ) ) )
205 167 fveq2d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) = ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ) )
206 173 fveq2d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) = ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ) )
207 205 206 opeq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ⟨ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ⟩ = ⟨ ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ) , ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ) ⟩ )
208 179 fveq2d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝐸 ) β€˜ 𝑧 ) = ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) )
209 207 208 oveq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ⟨ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑧 ) ) = ( ⟨ ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ) , ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) ) )
210 173 179 oveq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( 𝑦 ( 2nd β€˜ 𝐸 ) 𝑧 ) = ( ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ( 2nd β€˜ 𝐸 ) ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) )
211 210 195 fveq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( 𝑦 ( 2nd β€˜ 𝐸 ) 𝑧 ) β€˜ 𝑔 ) = ( ( ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ( 2nd β€˜ 𝐸 ) ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) β€˜ ⟨ ( 1st β€˜ 𝑔 ) , ( 2nd β€˜ 𝑔 ) ⟩ ) )
212 167 173 oveq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) = ( ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ( 2nd β€˜ 𝐸 ) ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ) )
213 212 187 fveq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) β€˜ 𝑓 ) = ( ( ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ( 2nd β€˜ 𝐸 ) ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ) β€˜ ⟨ ( 1st β€˜ 𝑓 ) , ( 2nd β€˜ 𝑓 ) ⟩ ) )
214 209 211 213 oveq123d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( ( 𝑦 ( 2nd β€˜ 𝐸 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) β€˜ 𝑓 ) ) = ( ( ( ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ( 2nd β€˜ 𝐸 ) ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) β€˜ ⟨ ( 1st β€˜ 𝑔 ) , ( 2nd β€˜ 𝑔 ) ⟩ ) ( ⟨ ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ) , ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ ⟨ ( 1st β€˜ 𝑧 ) , ( 2nd β€˜ 𝑧 ) ⟩ ) ) ( ( ⟨ ( 1st β€˜ π‘₯ ) , ( 2nd β€˜ π‘₯ ) ⟩ ( 2nd β€˜ 𝐸 ) ⟨ ( 1st β€˜ 𝑦 ) , ( 2nd β€˜ 𝑦 ) ⟩ ) β€˜ ⟨ ( 1st β€˜ 𝑓 ) , ( 2nd β€˜ 𝑓 ) ⟩ ) ) )
215 199 204 214 3eqtr4d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑦 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ∧ 𝑧 ∈ ( ( 𝐢 Func 𝐷 ) Γ— ( Base β€˜ 𝐢 ) ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑧 ) β€˜ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ ( 𝑄 Γ—c 𝐢 ) ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd β€˜ 𝐸 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝐸 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐸 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝐸 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐸 ) 𝑦 ) β€˜ 𝑓 ) ) )
216 21 22 23 24 25 26 27 7 29 4 44 55 121 162 215 isfuncd ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝐸 ) ( ( 𝑄 Γ—c 𝐢 ) Func 𝐷 ) ( 2nd β€˜ 𝐸 ) )
217 df-br ⊒ ( ( 1st β€˜ 𝐸 ) ( ( 𝑄 Γ—c 𝐢 ) Func 𝐷 ) ( 2nd β€˜ 𝐸 ) ↔ ⟨ ( 1st β€˜ 𝐸 ) , ( 2nd β€˜ 𝐸 ) ⟩ ∈ ( ( 𝑄 Γ—c 𝐢 ) Func 𝐷 ) )
218 216 217 sylib ⊒ ( πœ‘ β†’ ⟨ ( 1st β€˜ 𝐸 ) , ( 2nd β€˜ 𝐸 ) ⟩ ∈ ( ( 𝑄 Γ—c 𝐢 ) Func 𝐷 ) )
219 18 218 eqeltrd ⊒ ( πœ‘ β†’ 𝐸 ∈ ( ( 𝑄 Γ—c 𝐢 ) Func 𝐷 ) )