Step |
Hyp |
Ref |
Expression |
1 |
|
xpcco2.t |
⊢ 𝑇 = ( 𝐶 ×c 𝐷 ) |
2 |
|
xpcco2.x |
⊢ 𝑋 = ( Base ‘ 𝐶 ) |
3 |
|
xpcco2.y |
⊢ 𝑌 = ( Base ‘ 𝐷 ) |
4 |
|
xpcco2.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
5 |
|
xpcco2.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
6 |
|
xpcco2.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑋 ) |
7 |
|
xpcco2.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑌 ) |
8 |
|
xpcco2.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
9 |
|
xpcco2.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑌 ) |
10 |
|
xpchom2.k |
⊢ 𝐾 = ( Hom ‘ 𝑇 ) |
11 |
1 2 3
|
xpcbas |
⊢ ( 𝑋 × 𝑌 ) = ( Base ‘ 𝑇 ) |
12 |
6 7
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑀 , 𝑁 〉 ∈ ( 𝑋 × 𝑌 ) ) |
13 |
8 9
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑃 , 𝑄 〉 ∈ ( 𝑋 × 𝑌 ) ) |
14 |
1 11 4 5 10 12 13
|
xpchom |
⊢ ( 𝜑 → ( 〈 𝑀 , 𝑁 〉 𝐾 〈 𝑃 , 𝑄 〉 ) = ( ( ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) 𝐻 ( 1st ‘ 〈 𝑃 , 𝑄 〉 ) ) × ( ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) 𝐽 ( 2nd ‘ 〈 𝑃 , 𝑄 〉 ) ) ) ) |
15 |
|
op1stg |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌 ) → ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑀 ) |
16 |
6 7 15
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑀 ) |
17 |
|
op1stg |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌 ) → ( 1st ‘ 〈 𝑃 , 𝑄 〉 ) = 𝑃 ) |
18 |
8 9 17
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝑃 , 𝑄 〉 ) = 𝑃 ) |
19 |
16 18
|
oveq12d |
⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) 𝐻 ( 1st ‘ 〈 𝑃 , 𝑄 〉 ) ) = ( 𝑀 𝐻 𝑃 ) ) |
20 |
|
op2ndg |
⊢ ( ( 𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌 ) → ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑁 ) |
21 |
6 7 20
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑁 ) |
22 |
|
op2ndg |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌 ) → ( 2nd ‘ 〈 𝑃 , 𝑄 〉 ) = 𝑄 ) |
23 |
8 9 22
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑃 , 𝑄 〉 ) = 𝑄 ) |
24 |
21 23
|
oveq12d |
⊢ ( 𝜑 → ( ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) 𝐽 ( 2nd ‘ 〈 𝑃 , 𝑄 〉 ) ) = ( 𝑁 𝐽 𝑄 ) ) |
25 |
19 24
|
xpeq12d |
⊢ ( 𝜑 → ( ( ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) 𝐻 ( 1st ‘ 〈 𝑃 , 𝑄 〉 ) ) × ( ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) 𝐽 ( 2nd ‘ 〈 𝑃 , 𝑄 〉 ) ) ) = ( ( 𝑀 𝐻 𝑃 ) × ( 𝑁 𝐽 𝑄 ) ) ) |
26 |
14 25
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝑀 , 𝑁 〉 𝐾 〈 𝑃 , 𝑄 〉 ) = ( ( 𝑀 𝐻 𝑃 ) × ( 𝑁 𝐽 𝑄 ) ) ) |