Metamath Proof Explorer


Theorem xpchom2

Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpcco2.t T = C × c D
xpcco2.x X = Base C
xpcco2.y Y = Base D
xpcco2.h H = Hom C
xpcco2.j J = Hom D
xpcco2.m φ M X
xpcco2.n φ N Y
xpcco2.p φ P X
xpcco2.q φ Q Y
xpchom2.k K = Hom T
Assertion xpchom2 φ M N K P Q = M H P × N J Q

Proof

Step Hyp Ref Expression
1 xpcco2.t T = C × c D
2 xpcco2.x X = Base C
3 xpcco2.y Y = Base D
4 xpcco2.h H = Hom C
5 xpcco2.j J = Hom D
6 xpcco2.m φ M X
7 xpcco2.n φ N Y
8 xpcco2.p φ P X
9 xpcco2.q φ Q Y
10 xpchom2.k K = Hom T
11 1 2 3 xpcbas X × Y = Base T
12 6 7 opelxpd φ M N X × Y
13 8 9 opelxpd φ P Q X × Y
14 1 11 4 5 10 12 13 xpchom φ M N K P Q = 1 st M N H 1 st P Q × 2 nd M N J 2 nd P Q
15 op1stg M X N Y 1 st M N = M
16 6 7 15 syl2anc φ 1 st M N = M
17 op1stg P X Q Y 1 st P Q = P
18 8 9 17 syl2anc φ 1 st P Q = P
19 16 18 oveq12d φ 1 st M N H 1 st P Q = M H P
20 op2ndg M X N Y 2 nd M N = N
21 6 7 20 syl2anc φ 2 nd M N = N
22 op2ndg P X Q Y 2 nd P Q = Q
23 8 9 22 syl2anc φ 2 nd P Q = Q
24 21 23 oveq12d φ 2 nd M N J 2 nd P Q = N J Q
25 19 24 xpeq12d φ 1 st M N H 1 st P Q × 2 nd M N J 2 nd P Q = M H P × N J Q
26 14 25 eqtrd φ M N K P Q = M H P × N J Q